799 resultados para SVM (Support Vector Machine)
Resumo:
On-site tracking in open construction sites is often difficult because of the large amounts of items that are present and need to be tracked. Additionally, the amounts of occlusions/obstructions present create a highly complex tracking environment. Existing tracking methods are based mainly on Radio Frequency technologies, including Global Positioning Systems (GPS), Radio Frequency Identification (RFID), Bluetooth and Wireless Fidelity (Wi-Fi, Ultra-Wideband, etc). These methods require considerable amounts of pre-processing time since they need to manually deploy tags and keep record of the items they are placed on. In construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. This paper presents a novel method for open site tracking with construction cameras based on machine vision. According to this method, video feed is collected from on site video cameras, and the user selects the entity he wishes to track. The entity is tracked in each video using 2D vision tracking. Epipolar geometry is then used to calculate the depth of the marked area to provide the 3D location of the entity. This method addresses the limitations of radio frequency methods by being unobtrusive and using inexpensive, and easy to deploy equipment. The method has been implemented in a C++ prototype and preliminary results indicate its effectiveness
Resumo:
This paper presents a generalized vector control system for a generic brushless doubly fed (induction) machine (BDFM) with nested-loop type rotor. The generic BDFM consists of p1/p2 pole-pair stator windings and a nested-loop rotor with N number of loops per nest. The vector control system is derived based on the basic BDFM equation in the synchronous mode accompanied with an appropriate synchronization approach to the grid. An analysis is performed for the vector control system using the generic BDFM vector model. The analysis proves the efficacy of the proposed approach in BDFM electromagnetic torque and rotor flux control. In fact, in the proposed vector control system, the BDFM torque can be controlled very effectively promising a high-performance BDFM shaft speed control system. A closed-loop shaft speed control system is composed based on the presented vector control system whose performance is examined both in simulations and experiments. The results confirm the high performance of the proposed approach in BDFM shaft speed control as well as a very close agreement between the simulations and experiments. Tests are performed on a 180-frame prototype BDFM. © 2012 IEEE.
Resumo:
Large concrete structures need to be inspected in order to assess their current physical and functional state, to predict future conditions, to support investment planning and decision making, and to allocate limited maintenance and rehabilitation resources. Current procedures in condition and safety assessment of large concrete structures are performed manually leading to subjective and unreliable results, costly and time-consuming data collection, and safety issues. To address these limitations, automated machine vision-based inspection procedures have increasingly been proposed by the research community. This paper presents current achievements and open challenges in vision-based inspection of large concrete structures. First, the general concept of Building Information Modeling is introduced. Then, vision-based 3D reconstruction and as-built spatial modeling of concrete civil infrastructure are presented. Following that, the focus is set on structural member recognition as well as on concrete damage detection and assessment exemplified for concrete columns. Although some challenges are still under investigation, it can be concluded that vision-based inspection methods have significantly improved over the last 10 years, and now, as-built spatial modeling as well as damage detection and assessment of large concrete structures have the potential to be fully automated.
Resumo:
We present a novel ridge detector that finds ridges on vector fields. It is designed to automatically find the right scale of a ridge even in the presence of noise, multiple steps and narrow valleys. One of the key features of such ridge detector is that it has a zero response at discontinuities. The ridge detector can be applied to scalar and vector quantities such as color. We also present a parallel perceptual organization scheme based on such ridge detector that works without edges; in addition to perceptual groups, the scheme computes potential focus of attention points at which to direct future processing. The relation to human perception and several theoretical findings supporting the scheme are presented. We also show results of a Connection Machine implementation of the scheme for perceptual organization (without edges) using color.
Resumo:
The Computer Aided Parallelisation Tools (CAPTools) [Ierotheou, C, Johnson SP, Cross M, Leggett PF, Computer aided parallelisation tools (CAPTools)-conceptual overview and performance on the parallelisation of structured mesh codes, Parallel Computing, 1996;22:163±195] is a set of interactive tools aimed to provide automatic parallelisation of serial FORTRAN Computational Mechanics (CM) programs. CAPTools analyses the user's serial code and then through stages of array partitioning, mask and communication calculation, generates parallel SPMD (Single Program Multiple Data) messages passing FORTRAN. The parallel code generated by CAPTools contains calls to a collection of routines that form the CAPTools communications Library (CAPLib). The library provides a portable layer and user friendly abstraction over the underlying parallel environment. CAPLib contains optimised message passing routines for data exchange between parallel processes and other utility routines for parallel execution control, initialisation and debugging. By compiling and linking with different implementations of the library, the user is able to run on many different parallel environments. Even with today's parallel systems the concept of a single version of a parallel application code is more of an aspiration than a reality. However for CM codes the data partitioning SPMD paradigm requires a relatively small set of message-passing communication calls. This set can be implemented as an intermediate `thin layer' library of message-passing calls that enables the parallel code (especially that generated automatically by a parallelisation tool such as CAPTools) to be as generic as possible. CAPLib is just such a `thin layer' message passing library that supports parallel CM codes, by mapping generic calls onto machine specific libraries (such as CRAY SHMEM) and portable general purpose libraries (such as PVM an MPI). This paper describe CAPLib together with its three perceived advantages over other routes: - as a high level abstraction, it is both easy to understand (especially when generated automatically by tools) and to implement by hand, for the CM community (who are not generally parallel computing specialists); - the one parallel version of the application code is truly generic and portable; - the parallel application can readily utilise whatever message passing libraries on a given machine yield optimum performance.
Resumo:
Previous studies have revealed considerable interobserver and intraobserver variation in the histological classification of preinvasive cervical squamous lesions. The aim of the present study was to develop a decision support system (DSS) for the histological interpretation of these lesions. Knowledge and uncertainty were represented in the form of a Bayesian belief network that permitted the storage of diagnostic knowledge and, for a given case, the collection of evidence in a cumulative manner that provided a final probability for the possible diagnostic outcomes. The network comprised 8 diagnostic histological features (evidence nodes) that were each independently linked to the diagnosis (decision node) by a conditional probability matrix. Diagnostic outcomes comprised normal; koilocytosis; and cervical intraepithelial neoplasia (CIN) 1, CIN II, and CIN M. For each evidence feature, a set of images was recorded that represented the full spectrum of change for that feature. The system was designed to be interactive in that the histopathologist was prompted to enter evidence into the network via a specifically designed graphical user interface (i-Path Diagnostics, Belfast, Northern Ireland). Membership functions were used to derive the relative likelihoods for the alternative feature outcomes, the likelihood vector was entered into the network, and the updated diagnostic belief was computed for the diagnostic outcomes and displayed. A cumulative probability graph was generated throughout the diagnostic process and presented on screen. The network was tested on 50 cervical colposcopic biopsy specimens, comprising 10 cases each of normal, koilocytosis, CIN 1, CIN H, and CIN III. These had been preselected by a consultant gynecological pathologist. Using conventional morphological assessment, the cases were classified on 2 separate occasions by 2 consultant and 2 junior pathologists. The cases were also then classified using the DSS on 2 occasions by the 4 pathologists and by 2 medical students with no experience in cervical histology. Interobserver and intraobserver agreement using morphology and using the DSS was calculated with K statistics. Intraobserver reproducibility using conventional unaided diagnosis was reasonably good (kappa range, 0.688 to 0.861), but interobserver agreement was poor (kappa range, 0.347 to 0.747). Using the DSS improved overall reproducibility between individuals. Using the DSS, however, did not enhance the diagnostic performance of junior pathologists when comparing their DSS-based diagnosis against an experienced consultant. However, the generation of a cumulative probability graph also allowed a comparison of individual performance, how individual features were assessed in the same case, and how this contributed to diagnostic disagreement between individuals. Diagnostic features such as nuclear pleomorphism were shown to be particularly problematic and poorly reproducible. DSSs such as this therefore not only have a role to play in enhancing decision making but also in the study of diagnostic protocol, education, self-assessment, and quality control. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Aim-To develop an expert system model for the diagnosis of fine needle aspiration cytology (FNAC) of the breast.
Methods-Knowledge and uncertainty were represented in the form of a Bayesian belief network which permitted the combination of diagnostic evidence in a cumulative manner and provided a final probability for the possible diagnostic outcomes. The network comprised 10 cytological features (evidence nodes), each independently linked to the diagnosis (decision node) by a conditional probability matrix. The system was designed to be interactive in that the cytopathologist entered evidence into the network in the form of likelihood ratios for the outcomes at each evidence node.
Results-The efficiency of the network was tested on a series of 40 breast FNAC specimens. The highest diagnostic probability provided by the network agreed with the cytopathologists' diagnosis in 100% of cases for the assessment of discrete, benign, and malignant aspirates. A typical probably benign cases were given probabilities in favour of a benign diagnosis. Suspicious cases tended to have similar probabilities for both diagnostic outcomes and so, correctly, could not be assigned as benign or malignant. A closer examination of cumulative belief graphs for the diagnostic sequence of each case provided insight into the diagnostic process, and quantitative data which improved the identification of suspicious cases.
Conclusion-The further development of such a system will have three important roles in breast cytodiagnosis: (1) to aid the cytologist in making a more consistent and objective diagnosis; (2) to provide a teaching tool on breast cytological diagnosis for the non-expert; and (3) it is the first stage in the development of a system capable of automated diagnosis through the use of expert system machine vision.
Resumo:
Process monitoring and Predictive Maintenance (PdM) are gaining increasing attention in most manufacturing environments as a means of reducing maintenance related costs and downtime. This is especially true in industries that are data intensive such as semiconductor manufacturing. In this paper an adaptive PdM based flexible maintenance scheduling decision support system, which pays particular attention to associated opportunity and risk costs, is presented. The proposed system, which employs Machine Learning and regularized regression methods, exploits new information as it becomes available from newly processed components to refine remaining useful life estimates and associated costs and risks. The system has been validated on a real industrial dataset related to an Ion Beam Etching process for semiconductor manufacturing.
Resumo:
In this paper, an automatic Smart Irrigation Decision Support System, SIDSS, is proposed to manage irrigation in agriculture. Our system estimates the weekly irrigations needs of a plantation, on the basis of both soil measurements and climatic variables gathered by several autonomous nodes deployed in field. This enables a closed loop control scheme to adapt the decision support system to local perturbations and estimation errors. Two machine learning techniques, PLSR and ANFIS, are proposed as reasoning engine of our SIDSS. Our approach is validated on three commercial plantations of citrus trees located in the South-East of Spain. Performance is tested against decisions taken by a human expert.
Resumo:
Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
Geographic information systems give us the possibility to analyze, produce, and edit geographic information. Furthermore, these systems fall short on the analysis and support of complex spatial problems. Therefore, when a spatial problem, like land use management, requires a multi-criteria perspective, multi-criteria decision analysis is placed into spatial decision support systems. The analytic hierarchy process is one of many multi-criteria decision analysis methods that can be used to support these complex problems. Using its capabilities we try to develop a spatial decision support system, to help land use management. Land use management can undertake a broad spectrum of spatial decision problems. The developed decision support system had to accept as input, various formats and types of data, raster or vector format, and the vector could be polygon line or point type. The support system was designed to perform its analysis for the Zambezi river Valley in Mozambique, the study area. The possible solutions for the emerging problems had to cover the entire region. This required the system to process large sets of data, and constantly adjust to new problems’ needs. The developed decision support system, is able to process thousands of alternatives using the analytical hierarchy process, and produce an output suitability map for the problems faced.