956 resultados para STRUCTURAL PHASE TRANSITION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypercoiling poly(styrene-ALT-maleic anhydride) (PSMA) is known to undergo conformational transition in response to environmental stimuli. This behavior allows it to associate with the phospholipid, 2-dilauryl-SN-glycero-3- phosphocholine (DLPC) to produce nanostructures analogous to lipoproteins. The complex represents a new bio-mimetic delivery vehicle with applications in the cosmetic and pharmaceutical industries. This study investigates, for the first time, the association behavior of PSMA and DLPC through the combination of different analytical techniques. The results indicate that the association is primarily driven by hydrophobic interactions and depends on various factors including the polymer/lipid ratio, the polymer molecular weight and the pH of the aqueous environment. The conformational transition of PSMA leads to the formation of discrete micellar complexes involving anisotropic-to-isotropic lipid phase transformation. As the number of hydrophobic moieties in the polymer is increased, the pH-dependent conformational transition of the polymer plays less important part in achieving this phase transition of the lipid. © (2012) Trans Tech Publications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on dynamic renormalization group techniques, this letter analyzes the effects of external stochastic perturbations on the dynamical properties of cholesteric liquid crystals, studied in presence of a random magnetic field. Our analysis quantifies the nature of the temperature dependence of the dynamics; the results also highlight a hitherto unexplored regime in cholesteric liquid crystal dynamics. We show that stochastic fluctuations drive the system to a second-ordered Kosterlitz-Thouless phase transition point, eventually leading to a Kardar-Parisi-Zhang (KPZ) universality class. The results go beyond quasi-first order mean-field theories, and provides the first theoretical understanding of a KPZ phase in distorted nematic liquid crystal dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Individuals often imitate each other to fall into the typical group, leading to a self-organized state of typical behaviors in a community. In this paper, we model self-organization in social tagging systems and illustrate the underlying interaction and dynamics. Specifically, we introduce a model in which individuals adjust their own tagging tendency to imitate the average tagging tendency. We found that when users are of low confidence, they tend to imitate others and lead to a self-organized state with active tagging. On the other hand, when users are of high confidence and are stubborn to change, tagging becomes inactive. We observe a phase transition at a critical level of user confidence when the system changes from one regime to the other. The distributions of post length obtained from the model are compared to real data, which show good agreement. © 2011 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, ammonia borane has increasingly attracted researchers’ attention because of its merging applications, such as organic synthesis, boron nitride compounds synthesis, and hydrogen storage. This dissertation presents the results from several studies related to ammonia borane. The pressure-induced tetragonal to orthorhombic phase transition in ammonia borane was studied in a diamond anvil cell using in situ Raman spectroscopy. We found a positive Clapeyron-slope for this phase transformation in the experiment, which implies that the phase transition from tetragonal to orthorhombic is exothermic. The result of this study indicates that the rehydrogenation of the high pressure orthorhombic phase is expected to be easier than that of the ambient pressure tetragonal phase due to its lower enthalpy. The high pressure behavior of ammonia borane after thermal decomposition was studied by in situ Raman spectroscopy at high pressures up to 10 GPa. The sample of ammonia borane was first decomposed at ~140 degree Celcius and ~0.7 GPa and then compessed step wise in an isolated sample chamber of a diamond anvil cell for Raman spectroscopy measurement. We did not observe the characteristic shift of Raman mode under high pressure due to dihydrogen bonding, indicating that the dihydrogen bonding disappears in the decomposed ammonia borane. Although no chemical rehydrogenation was detected in this study, the decomposed ammonia borane could store extra hydrogen by physical absorption. The effect of nanoconfinement on ammonia borane at high pressures and different temperatures was studied. Ammonia borane was mixed with a type of mesoporous silica, SBA-15, and restricted within a small space of nanometer scale. The nano-scale ammonia borane was decomposed at ~125 degree Celcius in a diamond anvil cell and rehydrogenated after applying high pressures up to ~13 GPa at room temperature. The successful rehydrogenation of decomposed nano-scale ammonia borane gives guidance to further investigations on hydrogen storage. In addition, the high pressure behavior of lithium amidoborane, one derivative of ammonia borane, was studied at different temperatures. Lithium amidoborane (LAB) was decomposed and recompressed in a diamond anvil cell. After applying high pressures on the decomposed lithium amidoborane, its recovery peaks were discovered by Raman spectroscopy. This result suggests that the decomposition of LAB is reversible at high pressures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bicellar lipid mixture dispersions progressively coalesce to larger structures on warming. This phase behaviour is particularly sensitive to interactions that perturb bilayer properties. In this study, ²H NMR was used to study the perturbation of bicellar lipid mixtures by two peptides (SP-B₆₃₋₇₈, a lung surfactant protein fragment and Magainin 2, an antimicrobial peptide) which are structurally similar. Particular attention was paid to the relation between peptide-induced perturbation and lipid composition. In bicellar dispersions containing only zwitterionic lipids (DMPC-d₅₄/DMPC/DHPC (3:1:1)) both peptides had little to no effect on the temperature at which coalescence to larger structures occurred. Conversely, in mixtures containing anionic lipids (DMPC-d₅₄/DMPG/DHPC (3:1:1)), both peptides modified bicellar phase behaviour. In mixtures containing SP-B₆₃₋₇₈, the presence of peptide decreased the temperature of the ribbon-like to extended lamellar phase transition. The addition of Magainin 2 to DMPCd₅₄/ DMPG/DHPC (3:1:1) mixtures, in contrast, increased the temperature of this transition and yielded a series of spectra resembling DMPC/DHPC (4:1) mixtures. Additional studies of lipid dispersions containing deuterated anionic lipids were done to determine whether the observed perturbation involved a peptide-induced separation of zwitterionic and anionic lipids. Comparison of DMPC/DMPG-d₅₄/DHPC (3:1:1) and DMPC-d₅₄/DMPG/DHPC (3:1:1) mixtures showed that DMPC and DMPG occupy similar environments in the presence of SP-B₆₃₋₇₈, but different lipid environments in the presence of Magainin 2. This might reflect the promotion of anionic lipid clustering by Magainin 2. These results demonstrate the variability of mechanisms of peptide-induced perturbation and suggest that lipid composition is an important factor in the peptide-induced perturbation of lipid structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geometric frustration occurs in the rare earth pyrochlores due to magnetic rare earth ions occupying the vertices of the network of corner-sharing tetrahedra. In this research, we have two parts. In the first one we study the phase transition to the magnetically ordered state at low temperature in the pyrochlore Er₂Ti₂O₇. The molecular field method was used to solve this problem. In the second part, we analyse the crystal electric field Hamiltonian for the rare earth sites. The rather large degeneracy of the angular momentum J of the rare earth ion is lifted by the crystal electric field due to the neighboring ions in the crystal. By rewriting the Stevens operators in the crystal electric field Hamiltonian ᴴCEF in terms of charge quadruple operators, we can identify unstable order parameters in ᴴCEF . These may be related to lattice instabilities in Tb₂Ti₂O₇.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thermal evaporation method developed in the research group enables to grow and design several morphologies of semiconducting oxide nanostructures, such as Ga_2O_3, GeO_2 or Sb_2O_3, among others, and some ternary oxide compounds (ZnGa_2O_4, Zn_2GeO_4). In order to tailor physical properties, a successful doping of these nanostructures is required. However, for nanostructured materials, doping may affect not only their physical properties, but also their morphology during the thermal growth process. In this paper, we will show some examples of how the addition of impurities may result into the formation of complex structures, or changes in the structural phase of the material. In particular, we will consider the addition of Sn and Cr impurities into the precursors used to grow Ga_2O_3, Zn_2GeO_4 and Sb_2O_3 nanowires, nanorods or complex nanostructures, such as crossing wires or hierarchical structures. Structural and optical properties were assessed by electron microscopy (SEM and TEM), confocal microscopy, spatially resolved cathodoluminescence (CL), photoluminescence, and Raman spectroscopies. The growth mechanisms, the luminescence bands and the optical confinement in the obtained oxide nanostructures will be discussed. In particular, some of these nanostructures have been found to be of interest as optical microcavities. These nanomaterials may have applications in optical sensing and energy devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We acknowledge the University of Aberdeen for provision of a studentship for Harriet Hopper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The binary compound SnSe exhibits record high thermoelectric performance, largely because of its very low thermal conductivity. The origin of the strong phonon anharmonicity leading to the low thermal conductivity of SnSe is investigated through first-principles calculations of the electronic structure and phonons. It is shown that a Jahn-Teller instability of the electronic structure is responsible for the high-temperature lattice distortion between the Cmcm and Pnma phases. The coupling of phonon modes and the phase transition mechanism are elucidated, emphasizing the connection with hybrid improper ferroelectrics. This coupled instability of electronic orbitals and lattice dynamics is the origin of the strong anharmonicity causing the ultralow thermal conductivity in SnSe. Exploiting such bonding instabilities to generate strong anharmonicity may provide a new rational to design efficient thermoelectric materials.