903 resultados para SPEED LIMIT
Resumo:
We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.
Resumo:
We study the backscattering of solar wind protons from the lunar regolith using the Solar Wind Monitor of the Sub-keV Atom Reflecting Analyzer on Chandrayaan-1. Our study focuses on the component of the backscattered particles that leaves the regolith with a positive charge. We find that the fraction of the incident solar wind protons that backscatter as protons, i.e., the proton-backscattering efficiency, has an exponential dependence on the solar wind speed that varies from ~0.01% to ~1% for solar wind speeds of 250 km/s to 550 km/s. We also study the speed distribution of the backscattered protons in the fast (~550 km/s) solar wind case and find both a peak speed at ~80% of the solar wind speed and a spread of ~85 km/s. The observed flux variations and speed distribution of the backscattered protons can be explained by a speed-dependent charge state of the backscattered particles.
Resumo:
BACKGROUND Fetal weight estimation (FWE) is an important factor for clinical management decisions, especially in imminent preterm birth at the limit of viability between 23(0/7) and 26(0/7) weeks of gestation. It is crucial to detect and eliminate factors that have a negative impact on the accuracy of FWE. DATA SOURCES In this systematic literature review, we investigated 14 factors that may influence the accuracy of FWE, in particular in preterm neonates born at the limit of viability. RESULTS We found that gestational age, maternal body mass index, amniotic fluid index and ruptured membranes, presentation of the fetus, location of the placenta and the presence of multiple fetuses do not seem to have an impact on FWE accuracy. The influence of the examiner's grade of experience and that of fetal gender were discussed controversially. Fetal weight, time interval between estimation and delivery and the use of different formulas seem to have an evident effect on FWE accuracy. No results were obtained on the impact of active labor. DISCUSSION This review reveals that only few studies investigated factors possibly influencing the accuracy of FWE in preterm neonates at the limit of viability. Further research in this specific age group on potential confounding factors is needed.
Resumo:
We introduce a multistable subordinator, which generalizes the stable subordinator to the case of time-varying stability index. This enables us to define a multifractional Poisson process. We study properties of these processes and establish the convergence of a continuous-time random walk to the multifractional Poisson process.
Resumo:
Climatic relationships were established in two 210Pb dated pollen sequences from small mires closely surrounded by forest just below actual forest limits (but about 300 m below potential climatic forest limits) in the northern Swiss Alps (suboceanic in climate; mainly with Picea) and the central Swiss Alps (subcontinental; mainly Pinus cembra and Larix) at annual or near-annual resolution from ad 1901 to 1996. Effects of vegetational succession were removed by splitting the time series into early and late periods and by linear detrending. Both pollen concentrations detrended by the depth-age model and modified percentages (in which counts of dominant pollen types are down-weighted) are correlated by simple linear regression with smoothed climatic parameters with one-and two-year timelags, including average monthly and April/September daylight air temperatures and with seasonal and annual precipitation sums. Results from detrended pollen concentrations suggest that peat accumulation is favoured in the northern-Alpine mire either by early snowmelt or by summer precipitation, but in the central-Alpine mire by increased precipitation and cooler summers, suggesting a position of the northern-Alpine mire near the upper altitudinal limit of peat formation, but of the central-Alpine mire near the lower limit. Results from modified pollen percentages indicate that pollen pro duction by plants growing near their upper altitudinal limit is limited by insufficient warmth in summer, and pollen production by plants growing near their lower altitudinal limit is limited by too-high temperatures. Only weakly significant pollen/climate relationships were found for Pinus cembra and Larix, probably because they experience little climatic stress growing 300 m below the potential climatic forest limit.
Resumo:
The limitations of diagnostic echo ultrasound have motivated research into novel modalities that complement ultrasound in a multimodal device. One promising candidate is speed of sound imaging, which has been found to reveal structural changes in diseased tissue. Transmission ultrasound tomography shows speed of sound spatially resolved, but is limited to the acoustically transparent breast. We present a novel method by which speed-of-sound imaging is possible using classic pulse-echo equipment, facilitating new clinical applications and the combination with state-of-the art diagnostic ultrasound. Pulse-echo images are reconstructed while scanning the tissue under various angles using transmit beam steering. Differences in average sound speed along different transmit directions are reflected in the local echo phase, which allows a 2-D reconstruction of the sound speed. In the present proof-of-principle study, we describe a contrast resolution of 0.6% of average sound speed and a spatial resolution of 1 mm (laterally) × 3 mm (axially), suitable for diagnostic applications.
Resumo:
Aberrations of the acoustic wave front, caused by spatial variations of the speed-of-sound, are a main limiting factor to the diagnostic power of medical ultrasound imaging. If not accounted for, aberrations result in low resolution and increased side lobe level, over all reducing contrast in deep tissue imaging. Various techniques have been proposed for quantifying aberrations by analysing the arrival time of coherent echoes from so-called guide stars or beacons. In situations where a guide star is missing, aperture-based techniques may give ambiguous results. Moreover, they are conceptually focused on aberrators that can be approximated as a phase screen in front of the probe. We propose a novel technique, where the effect of aberration is detected in the reconstructed image as opposed to the aperture data. The varying local echo phase when changing the transmit beam steering angle directly reflects the varying arrival time of the transmit wave front. This allows sensing the angle-dependent aberration delay in a spatially resolved way, and thus aberration correction for a spatially distributed volume aberrator. In phantoms containing a cylindrical aberrator, we achieved location-independent diffraction-limited resolution as well as accurate display of echo location based on reconstructing the speed-of-sound spatially resolved. First successful volunteer results confirm the clinical potential of the proposed technique.
Resumo:
Annual pollen influx has been monitored in short transects across the altitudinal tree limit in four areas of the Swiss Alps with the use of modified Tauber traps placed at the ground surface. The study areas are Grindelwald (8 traps), Aletsch (8 traps), Simplon (5 traps), and Zermatt (5 traps). The vegetation around the traps is described. The results obtained are: (1) Peak years of pollen influx (one or two in seven years) follow years of high average air temperatures during June–November of the previous year for Larix and Picea, and less clearly for Pinus non-cembra, but not at all for Pinus cembra and Alnus viridis. (2) At the upper forest limit, the regional pollen influx of trees (trees absent within 100 m of the pollen trap) relates well to the average basal area of the same taxon within 10–15 km of the study areas for Pinus cembra, Larix, and Betula, but not for Picea, Pinus non-cembra, and Alnus viridis. (3) The example of Zermatt shows that pollen influx characterises the upper forest limit, if the latter is more or less intact. (4) Presence/absence of Picea, Pinus cembra, Larix, Pinus non-cembra, and Alnus viridis trees within 50–100 m of the traps is apparent in the pollen influx in peak years of pollen influx but not in other years, suggesting that forest-limit trees produce significant amounts of pollen only in some years. (5) Pollen influx averaged over the study period correlates well with the abundance of plants around the pollen traps for conifer trees (but not deciduous trees), Calluna, Gramineae, and Cyperaceae, and less clearly so Compositae Subfam. Cichorioideae and Potentilla-type. (6) Influx of extra-regional pollen derived from south of the Alps is highest in Simplon, which is open to southerly winds, slightly lower in Aletsch lying just north of Simplon, and lowest in Zermatt sheltered from the south by high mountains and Grindelwald lying north of the central Alps.
Resumo:
FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here, we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.
Resumo:
We analyse the variability of the probability distribution of daily wind speed in wintertime over Northern and Central Europe in a series of global and regional climate simulations covering the last centuries, and in reanalysis products covering approximately the last 60 years. The focus of the study lies on identifying the link of the variations in the wind speed distribution to the regional near-surface temperature, to the meridional temperature gradient and to the North Atlantic Oscillation. Our main result is that the link between the daily wind distribution and the regional climate drivers is strongly model dependent. The global models tend to behave similarly, although they show some discrepancies. The two regional models also tend to behave similarly to each other, but surprisingly the results derived from each regional model strongly deviates from the results derived from its driving global model. In addition, considering multi-centennial timescales, we find in two global simulations a long-term tendency for the probability distribution of daily wind speed to widen through the last centuries. The cause for this widening is likely the effect of the deforestation prescribed in these simulations. We conclude that no clear systematic relationship between the mean temperature, the temperature gradient and/or the North Atlantic Oscillation, with the daily wind speed statistics can be inferred from these simulations. The understand- ing of past and future changes in the distribution of wind speeds, and thus of wind speed extremes, will require a detailed analysis of the representation of the interaction between large-scale and small-scale dynamics.
Resumo:
The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy-disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual-based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10-fold reduction estimated at 300 years. Our research demonstrates the crucial but oft-ignored linkage between Janzen–Connell effects on offspring and population-level consequences for a long-lived, potentially dominant tree species.
Resumo:
Many studies obtained reliable individual differences in speed of information processing (SIP) as measured by elementary cognitive tasks (ECTs). ECTs usually employ response times (RT) as measure of SIP, but different ECTs target different cognitive processes (e.g., simple or choice reaction, inhibition). Here we used modified versions of the Hick and the Eriksen Flanker task to examine whether these tasks assess dissociable or common aspects of SIP. In both tasks, task complexity was systematically varied across three levels. RT data were collected from 135 participants. Applying fixed-links modeling, RT variance increasing with task complexity was separated from RT variance unchanging across conditions. For each task, these aspects of variance were represented by two independent latent variables. The two latent variables representing RT variance not varying with complexity of the two tasks were virtually identical (r = .83). The latent variables representing increasing complexity in the two tasks were also highly correlated (r = .72) but clearly dissociable. Thus, RT measures contain both task-unspecific, person-related aspects of SIP as well as task-specific aspects indicating the cognitive processes manipulated with the respective task. Separating these aspects of SIP facilitates the interpretation of individual differences in RT.
Resumo:
For over 3 centuries, diameter-limit harvesting has been a predominant logging method in the northeastern United States. Silvicultural theory asserts that such intensively selective harvesting can lead to genetic degradation. A decrease in softwood productivity has recently been reported in Maine - has a long history of dysgenic selection degraded the genetic resources of Maine softwoods, contributing to a decrease in growth and productivity? This study examines two aspects of potential implications of diameter-limit harvesting: effects on residual phenotypes of red spruce and impacts on genetic diversity of white pine. Radial growth of residual red spruce trees in stands experiencing 50 years of fixed diameter-limit harvesting was measured using annual increment rings and compared with residual red spruce trees in positive selection stands. Trees remaiaing after several rounds of diameter-limit harvesting exhibited sigdicantl y smaller radial sizes throughout their lives, and displayed significantly slower growth rates for the first 80 years of measured growth. These results strongly suggest that the largest and fastest-growing genotypes and their respective gene complexes determining good radial growth have been removed from the diameter-limit stand. Dysgenic selection can be observed in fixed diarneter-limit stands, resulting in a diminished genetic resource and decreased residual stand value. To examine more direct genetic implications of long-term diameter-limit harvesting, microsatellite DNA markers were implemented to study genetic diversity of eastern white pine in Maine. Three age groups of trees were studied: mature trees older than 200 years, juvenile trees 5-30 years old, and embryos. Trees were genotyped at 10 microsatellite loci. Overall genetic diversity levels of eastern white pine in Maine were extremely high, with an average observed heterozygosity of 0.762. Genetic differentiation was minimal among and between all three age groups, although an excess of heterozygotes was shown in the mature and juvenile groups that was not reflected in the embryo group, which actually had a slight heterozygote deficiency. Allele frequencies did not differ significantly between age groups, but did reveal more rare and low frequency alleles in the embryo groups than in the mature group. Overall, low frequency alleles comprise the largest portion of alleles in the sample population, with no common alleles evident overall. These results suggest that significant genetic degradation has either not occurred for white pine, or that the results of dysgenic selection have not yet emerged. It is clear, however, that selective harvesting could result in a loss of low frequency alleles, which are a primary reserve of evolutionary potential in a species. Implications of these studies affect industrial forestry, regional economics, and ecological concerns for the northeast. Long-term diameter-limit harvesting can lead to a degradation of residual phenotypes, and an overall decrease in stand quality. Potentially, a loss of low frequency, locally adapted alleles could result in a decrease of allelic richness and degradation of the regidnal genetic resource. Decreased genetic variation can lead to seriously limited evolutionary potential of species and ecosystems, particularly in rapidly changing environments. Based on these findings, I recommend a reassessment of any harvesting prescription that includes fixed diameter-limit removals, particularly for species that have low natural genetic diversity levels or a limited natural range, such as red spruce. Maintenance of a healthy genetic reserve can avoid effects of dysgenic harvesting.