973 resultados para SLIM FLOOR
Resumo:
The effect of an opposing wind on the stratification and flow produced by a buoyant plume rising from a heat source on the floor of a ventilated enclosure is investigated. Ventilation openings located at high level on the windward side of the enclosure and at low level on the leeward side allow a wind-driven flow from high to low level, opposite to the buoyancy-driven flow. One of two stable steady flow regimes is established depending on a dimensionless parameter F that characterizes the relative magnitudes of the wind-driven and buoyancy-driven velocities within the enclosure, and on the time history of the flow. A third, unstable steady flow solution is identified. For small opposing winds (small F) a steady, two-layer stratification and displacement ventilation is established. Exterior fluid enters through the lower leeward openings and buoyant interior fluid leaves through the upper windward openings. As the wind speed increases, the opposing wind may cause a reversal in the flow direction. In this case, cool exterior fluid enters through the high windward openings and mixes the interior fluid, which exits through the leeward openings. There are now two possibilities. If the rate of heat input by the source exceeds the rate of heat loss through the leeward openings, the temperature of the interior increases and this flow reversal is only maintained temporarily. The buoyancy force increases with time, the flow reverts to its original direction, and steady two-layer displacement ventilation is re-established and maintained. In this regime, the increase in wind speed increases the depth and temperature of the warm upper layer, and reduces the ventilation flow rate. If, on the other hand, the heat loss exceeds the heat input, the interior cools and the buoyancy-driven flow decreases. The reversed flow is maintained, the stratification is destroyed and mixing ventilation occurs. Further increases in wind speed increase the ventilation rate and decrease the interior temperature. The transitions between the two ventilation flow patterns exhibit hysteresis. The change from displacement ventilation to mixing ventilation occurs at a higher F than the transition from mixing to displacement. Further, we find that the transition from mixing to displacement ventilation occurs at a fixed value of F, whereas the transition from displacement to mixing flow is dependent on the details of the time history of the flow and the geometry of the openings, and is not determined solely by the value of F. Theoretical models that predic t the steady stratification profiles and flow rates for the displacement and mixing ventilation, and the transitions between them, are presented and compared with measurements from laboratory experiments. The transition between these ventilation patterns completely changes the internal environment, and we discuss some of the implications for the natural ventilation of buildings. © 2004 Cambridge University Press.
Resumo:
The US National Academy of Engineering recently identified restoring and improving urban infrastructure as one of the grand challenges of engineering. Part of this challenge stems from the lack of viable methods to map/label existing infrastructure. For computer vision, this challenge becomes “How can we automate the process of extracting geometric, object oriented models of infrastructure from visual data?” Object recognition and reconstruction methods have been successfully devised and/or adapted to answer this question for small or linear objects (e.g. columns). However, many infrastructure objects are large and/or planar without significant and distinctive features, such as walls, floor slabs, and bridge decks. How can we recognize and reconstruct them in a 3D model? In this paper, strategies for infrastructure object recognition and reconstruction are presented, to set the stage for posing the question above and discuss future research in featureless, large/planar object recognition and modeling.
Resumo:
Active vibration control (AVC) is a relatively new technology for the mitigation of annoying human-induced vibrations in floors. However, recent technological developments have demonstrated its great potential application in this field. Despite this, when a floor is found to have problematic floor vibrations after construction the unfamiliar technology of AVC is usually avoided in favour of more common techniques, such as Tuned Mass Dampers (TMDs) which have a proven track record of successful application, particularly for footbridges and staircases. This study aims to investigate the advantages and disadvantages that AVC has, when compared with TMDs, for the application of mitigation of pedestrian-induced floor vibrations in offices. Simulations are performed using the results from a finite element model of a typical office layout that has a high vibration response level. The vibration problems on this floor are then alleviated through the use of both AVC and TMDs and the results of each mitigation configuration compared. The results of this study will enable a more informed decision to be made by building owners and structural engineers regarding suitable technologies for reducing floor vibrations.
Resumo:
Experiments are conducted to examine the mechanisms behind the coupling between corner separation and separation away from the corner when holding a high-Machnumber M∞ = 1.5 normal shock in a rectangular channel. The ensuing shock wave interaction with the boundary layer on the wind tunnel floor and in the corners was studied using laser Doppler anemometry, Pitot probe traverses, pressure sensitive paint and flow visualization. The primary mechanism explaining the link between the corner separation size and the other areas of separation appears to be the generation of compression waves at the corner, which act to smear the adverse pressure gradient imposed upon other parts of the flow. Experimental results indicate that the alteration of the -region, which occurs in the supersonic portion of the shock wave/boundary layer interaction (SBLI), is more important than the generation of any blockage in the subsonic region downstream of the shock wave. © Copyright 2012 Cambridge University Press.
Resumo:
We compare natural ventilation flows established by a range of heat source distributions at floor level. Both evenly distributed and highly localised line and point source distributions are considered. We demonstrate that modelling the ventilation flow driven by a uniformly distributed heat source is equivalent to the flow driven by a large number of localised sources. A model is developed for the transient flow development in a room with a uniform heat distribution and is compared with existing models for localised buoyancy inputs. For large vent areas the flow driven by localised heat sources reaches a steady state more rapidly than the uniformly distributed case. For small vent areas there is little difference in the transient development times. Our transient model is then extended to consider the time taken to flush a neutrally buoyant pollutant from a naturally ventilated room. Again comparisons are drawn between uniform and localised (point and line) heat source geometries. It is demonstrated that for large vent areas a uniform heat distribution provides the fastest flushing. However, for smaller vent areas, localised heat sources produce the fastest flushing. These results are used to suggest a definition for the term 'natural ventilation efficiency', and a model is developed to estimate this efficiency as a function of the room and heat source geometries. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The airflow and thermal stratification produced by a localised heat source located at floor level in a closed room is of considerable practical interest and is commonly referred to as a 'filling box'. In rooms with low aspect ratios H/R ≲ 1 (room height H to characteristic horizontal dimension R) the thermal plume spreads laterally on reaching the ceiling and a descending horizontal 'front' forms separating a stably stratified, warm upper region from cooler air below. The stratification is well predicted for H/R ≲ 1 by the original filling box model of Baines and Turner (J. Fluid. Mech. 37 (1968) 51). This model represents a somewhat idealised situation of a plume rising from a point source of buoyancy alone-in particular the momentum flux at the source is zero. In practical situations, real sources of heating and cooling in a ventilation system often include initial fluxes of both buoyancy and momentum, e.g. where a heating system vents warm air into a space. This paper describes laboratory experiments to determine the dependence of the 'front' formation and stratification on the source momentum and buoyancy fluxes of a single source, and on the location and relative strengths of two sources from which momentum and buoyancy fluxes were supplied separately. For a single source with a non-zero input of momentum, the rate of descent of the front is more rapid than for the case of zero source momentum flux and increases with increasing momentum input. Increasing the source momentum flux effectively increases the height of the enclosure, and leads to enhanced overturning motions and finally to complete mixing for highly momentum-driven flows. Stratified flows may be maintained by reducing the aspect ratio of the enclosure. At these low aspect ratios different long-time behaviour is observed depending on the nature of the heat input. A constant heat flux always produces a stratified interior at large times. On the other hand, a constant temperature supply ultimately produces a well-mixed space at the supply temperature. For separate sources of momentum and buoyancy, the developing stratification is shown to be strongly dependent on the separation of the sources and their relative strengths. Even at small separation distances the stratification initially exhibits horizontal inhomogeneity with localised regions of warm fluid (from the buoyancy source) and cool fluid. This inhomogeneity is less pronounced as the strength of one source is increased relative to the other. Regardless of the strengths of the sources, a constant buoyancy flux source dominates after sufficiently large times, although the strength of the momentum source determines whether the enclosure is initially well mixed (strong momentum source) or stably stratified (weak momentum source). © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate the mechanisms involved in the breakdown of the viscous regime in riblets, with a view to determining the point of optimum performance, where drag reduction ceases to be proportional to the riblet size. This occurs empirically for a groove cross-section $A_g^+ \approx 120^+$. To study the interaction of the riblets with the overlaying turbulent flow, we systematically conduct DNSes in a ribbed turbulent channel with increasing riblet size. The conditionally averaged crossflow above and within the grooves reveals a mean recirculation bubble that exists up to the point of viscous breakdown, isolating the groove floor from the overlying crossflow, and preventing the high momentum fluid from entering the grooves. We do not find evidence of outside vortices lodging within the grooves until $A_g^+ \approx 400$, which is well past the drag minimum, and already into the drag increasing regime. Interestingly, as the bubble breaks down, we observe that quasi-two-dimensional spanwise structures form just above the riblets, similar to those observed above porous surfaces and plant canopies, which appear to be involved in the performance degradation.
Resumo:
A separated oblique shock reflection on the floor of a rectangular cross-section wind tunnel has been investigated at M=2.5. The study aims to determine if and how separations occurring in the corners influence the main interaction as observed around the centreline of the floor. By changing the size of the corner separations through localised suction and small corner obstructions it was shown that the shape of the separated region in the centre was altered considerably. The separation length along the floor centreline was also modified by changes to the corner separation. A simple physical model has been proposed to explain the coupling between these separated regions based on the existence of compression or shock waves caused by the displacement effect of corner separation. These corner shocks alter the adverse pressure gradient imposed on the boundary-layer elsewhere which can lead to local reductions or increases of separation length. It is suggested that a typical oblique shock wave/boundary-layer interaction in rectangular channels features several zones depending on the relative position of the corner shocks and the main incident shock wave. Based on these findings the dependence of centre-line separation length on effective wind tunnel width is hypothesised. This requires further verification through experiments or computation. © 2013 by H. Babinsky.
Resumo:
We examine theoretically the transient displacement flow and density stratification that develops within a ventilated box after two localized floor-level heat sources of unequal strengths are activated. The heat input is represented by two non-interacting turbulent axisymmetric plumes of constant buoyancy fluxes B1 and B2 > B1. The box connects to an unbounded quiescent external environment of uniform density via openings at the top and base. A theoretical model is developed to predict the time evolution of the dimensionless depths λj and mean buoyancies δj of the 'intermediate' (j = 1) and 'top' (j = 2) layers leading to steady state. The flow behaviour is classified in terms of a stratification parameter S, a dimensionless measure of the relative forcing strengths of the two buoyant layers that drive the flow. We find that dδ1/dτ α 1/λ1 and dδ2/dτ α 1/λ2, where τ is a dimensionless time. When S 1, the intermediate layer is shallow (small λ1), whereas the top layer is relatively deep (large λ2) and, in this limit, δ1 and δ2 evolve on two characteristically different time scales. This produces a time lag and gives rise to a 'thermal overshoot', during which δ1 exceeds its steady value and attains a maximum during the transients; a flow feature we refer to, in the context of a ventilated room, as 'localized overheating'. For a given source strength ratio ψ = B1/B2, we show that thermal overshoots are realized for dimensionless opening areas A < Aoh and are strongly dependent on the time history of the flow. We establish the region of {A, ψ} space where rapid development of δ1 results in δ1 > δ2, giving rise to a bulk overturning of the buoyant layers. Finally, some implications of these results, specifically to the ventilation of a room, are discussed. © Cambridge University Press 2013.
Resumo:
Previous studies of transonic shock control bumps have often been either numerical or experimental. Comparisons between the two have been hampered by the limitations of either approach. The present work aims to bridge the gap between computational fluid dynamics and experiment by planning a joint approach from the outset. This enables high-quality validation data to be produced and ensures that the conclusions of either aspect of the study are directly relevant to the application. Experiments conducted with bumps mounted on the floor of a blowdown tunnel were modified to include an additional postshock adverse pressure gradient through the use of a diffuser as well as introducing boundary-layer suction ahead of the test section to enable the in-flow boundary layer to be manipulated. This has the advantage of being an inexpensive and highly repeatable method. Computations were performed on a standard airfoil model, with the flight conditions as free parameters. The experimental and computational setups were then tuned to produce baseline conditions that agree well, enabling confidence that the experimental conclusions are relevant. The methods are then applied to two different shock control bumps: a smoothly contoured bump, representative of previous studies, and a novel extended geometry featuring a continuously widening tail, which spans the wind-tunnel width at the rear of the bump. Comparison between the computational and experimental results for the contour bump showed good agreement both with respect to the flow structures and quantitative analysis of the boundary-layer parameters. It was seen that combining the experimental and numerical data could provide valuable insight into the flow physics, which would not generally be possible for a one-sided approach. The experiments and computational fluid dynamics were also seen to agree well for the extended bump geometry, providing evidence that, even though thebumpinteracts directly with the wind-tunnel walls, it was still possible to observe the key flow physics. The joint approach is thus suitable even for wider bump geometries. Copyright © 2013 by S. P. Colliss, H. Babinsky, K. Nubler, and T. Lutz. Published by the American Institute of Aeronautics and Astronautics, Inc.
Developing ISO 14649-based conversational programming system for multi-channel complex machine tools
Resumo:
A multi-channel complex machine tool (MCCM) is a versatile machining system equipped with more than two spindles and turrets for both turning and milling operations. Despite the potential of such a tool, the value of the hardware is largely dependent on how the machine tools are effectively programmed for machining. In this paper we consider a shop-floor programming system based on ISO 14649 (called e-CAM), the international standard for the interface between computer-aided manufacture (CAM) and computer numerical control (CNC). To be deployed in practical industrial usage a great deal of research has to be carried out. In this paper we present: 1) Design consideration for an e-CAM system, 2) The architecture design of e-CAM, 3) Major algorithms to fulfill the modules defined in the architecture, and 4) Implementation details.
Resumo:
In this paper, an efficient iterative discrete Fourier transform (DFT) -based channel estimator with good performance for multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems such as IEEE 802.11n which retain some sub-carriers as null sub-carriers (or virtual carriers) is proposed. In order to eliminate the mean-square error (MSE) floor effect existed in conventional DFT-based channel estimators, we proposed a low-complexity method to detect the significant channel impulse response (CIR) taps, which neither need any statistical channel information nor a predetermined threshold value. Analysis and simulation results show that the proposed method has much better performance than conventional DFT-based channel estimators and without MSE floor effect.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a 4th-order single-stage pipelined delta-sigma interpolator and a 300MS/s 12-bit current-steering DAC based on Q(2) Random Walk switching scheme. The delta-sigma interpolator is used to reduce the phase truncation error and the ROM size. The measured spurious-free dynamic range (SFDR) is greater than 80 dB for 8-bit phase value and 12-bit sine-amplitude output. The DDFS prototype is fabricated in a 0.35um CMOS technology with core area of 1.11mm(2).
Resumo:
在森林生态系统中,地被物由林下枯落物、苔藓层以及表层土壤的根系组成(Kosugiet al.,2001;程金花等,2003)。在动物、微生物以及环境温湿度的作用下,地被物不断分解,补充了土壤养分含量(刘洋等,2006)。地被物在地表形成一层结构疏松的毡层,不仅能够减小雨水对地面的冲击,阻滞和分散降水,还增加了地表粗糙度,能够阻滞地表径流,吸收和储存降水,促使水分缓慢入渗,在防止土壤侵蚀和保持水土方面发挥了重要作用(张洪江等,2003)。此外,研究还发现,地被物层能够减少土壤蒸发(Schaapet al.,1997),缓解表层土温变化,影响冬季土壤的冻结过程(Sharratt,1997),同时又是林下种子萌发和幼苗更新的制约因素之一(班勇等,1995)。目前,国内外地被物研究主要集中于枯落物的凋落动态(张冀等,2001;杨玉盛等,2001;郑征等,2005)、苔藓层和枯落物的持水特性(Naethet al.,1991;薛立等,2005;叶吉等,2004;Zhanget al.,2006)、枯落物分解及养分归还(王瑾等,2001;Chandiniet al.,2002;魏晶等,2004;邵玉琴等,2004)、枯落...
Resumo:
Electron. Manuf. Packag. Technol. Soc. Chin. Inst. Electron.; IEEE Compon., Packag., Manuf. Technol. Soc. (IEEE-CPMT); Xidian University