969 resultados para SEMANTICS
Resumo:
We report on a search for the production of the Higgs boson decaying to two bottom quarks accompanied by two additional quarks. The data sample used corresponds to an integrated luminosity of approximately 4 fb-1 of pp̅ collisions at √s=1.96 TeV recorded by the CDF II experiment. This search includes twice the integrated luminosity of the previous published result, uses analysis techniques to distinguish jets originating from light flavor quarks and those from gluon radiation, and adds sensitivity to a Higgs boson produced by vector boson fusion. We find no evidence of the Higgs boson and place limits on the Higgs boson production cross section for Higgs boson masses between 100 GeV/c2 and 150 GeV/c2 at the 95% confidence level. For a Higgs boson mass of 120 GeV/c2, the observed (expected) limit is 10.5 (20.0) times the predicted standard model cross section.
Resumo:
The Iberian Peninsula is recognized as an important refugial area for species survival and diversification during the climatic cycles of the Quaternary. Recent phylogeographic studies have revealed Iberia as a complex of multiple refugia. However, most of these studies have focused either on species with narrow distributions within the region or species groups that, although widely distributed, generally have a genetic structure that relates to pre-Quaternary cladogenetic events. In this study we undertake a detailed phylogeographic analysis of the lizard species, Lacerta lepida, whose distribution encompasses the entire Iberian Peninsula. We attempt to identify refugial areas, recolonization routes, zones of secondary contact and date demographic events within this species. Results support the existence of 6 evolutionary lineages (phylogroups) with a strong association between genetic variation and geography, suggesting a history of allopatric divergence in different refugia. Diversification within phylogroups is concordant with the onset of the Pleistocene climatic oscillations. The southern regions of several phylogroups show a high incidence of ancestral alleles in contrast with high incidence of recently derived alleles in northern regions. All phylogroups show signs of recent demographic and spatial expansions. We have further identified several zones of secondary contact, with divergent mitochondrial haplotypes occurring in narrow zones of sympatry. The concordant patterns of spatial and demographic expansions detected within phylogroups, together with the high incidence of ancestral haplotypes in southern regions of several phylogroups, suggests a pattern of contraction of populations into southern refugia during adverse climatic conditions from which subsequent northern expansions occurred. This study supports the emergent pattern of multiple refugia within Iberia but adds to it by identifying a pattern of refugia coincident with the southern distribution limits of individual evolutionary lineages. These areas are important in terms of long-term species persistence and therefore important areas for conservation.
Resumo:
This work studies decision problems from the perspective of nondeterministic distributed algorithms. For a yes-instance there must exist a proof that can be verified with a distributed algorithm: all nodes must accept a valid proof, and at least one node must reject an invalid proof. We focus on locally checkable proofs that can be verified with a constant-time distributed algorithm. For example, it is easy to prove that a graph is bipartite: the locally checkable proof gives a 2-colouring of the graph, which only takes 1 bit per node. However, it is more difficult to prove that a graph is not bipartite—it turns out that any locally checkable proof requires Ω(log n) bits per node. In this work we classify graph problems according to their local proof complexity, i.e., how many bits per node are needed in a locally checkable proof. We establish tight or near-tight results for classical graph properties such as the chromatic number. We show that the proof complexities form a natural hierarchy of complexity classes: for many classical graph problems, the proof complexity is either 0, Θ(1), Θ(log n), or poly(n) bits per node. Among the most difficult graph properties are symmetric graphs, which require Ω(n2) bits per node, and non-3-colourable graphs, which require Ω(n2/log n) bits per node—any pure graph property admits a trivial proof of size O(n2).
Resumo:
We study the following problem: given a geometric graph G and an integer k, determine if G has a planar spanning subgraph (with the original embedding and straight-line edges) such that all nodes have degree at least k. If G is a unit disk graph, the problem is trivial to solve for k = 1. We show that even the slightest deviation from the trivial case (e.g., quasi unit disk graphs or k = 1) leads to NP-hard problems.
Resumo:
This paper introduces CSP-like communication mechanisms into Backus’ Functional Programming (FP) systems extended by nondeterministic constructs. Several new functionals are used to describe nondeterminism and communication in programs. The functionals union and restriction are introduced into FP systems to develop a simple algebra of programs with nondeterminism. The behaviour of other functionals proposed in this paper are characterized by the properties of union and restriction. The axiomatic semantics of communication constructs are presented. Examples show that it is possible to reason about a communicating program by first transforming it into a non-communicating program by using the axioms of communication, and then reasoning about the resulting non-communicating version of the program. It is also shown that communicating programs can be developed from non-communicating programs given as specifications by using a transformational approach.
Resumo:
The distinction between a priori and a posteriori knowledge has been the subject of an enormous amount of discussion, but the literature is biased against recognizing the intimate relationship between these forms of knowledge. For instance, it seems to be almost impossible to find a sample of pure a priori or a posteriori knowledge. In this paper it will be suggested that distinguishing between a priori and a posteriori is more problematic than is often suggested, and that a priori and a posteriori resources are in fact used in parallel. We will define this relationship between a priori and a posteriori knowledge as the bootstrapping relationship. As we will see, this relationship gives us reasons to seek for an altogether novel definition of a priori and a posteriori knowledge. Specifically, we will have to analyse the relationship between a priori knowledge and a priori reasoning, and it will be suggested that the latter serves as a more promising starting point for the analysis of aprioricity. We will also analyse a number of examples from the natural sciences and consider the role of a priori reasoning in these examples. The focus of this paper is the analysis of the concepts of a priori and a posteriori knowledge rather than the epistemic domain of a posteriori and a priori justification.
Resumo:
Modal cohesion and subordination. The Finnish conditional and jussive moods in comparison to the French subjunctive This study examines verb moods in subordinate clauses in French and Finnish. The first part of the analysis deals with the syntax and semantics of the French subjunctive, mood occurring mostly in subordinate positions. The second part investigates Finnish verb moods. Although subordinate positions in Finnish grammar have no special finite verb form, certain uses of Finnish verb moods have been compared to those of subjunctives and conjunctives in other languages. The present study focuses on the subordinate uses of the Finnish conditional and jussive (i.e. the third person singular and plural of the imperative mood). The third part of the analysis discusses the functions of subordinate moods in contexts beyond complex sentences. The data used for the analysis include 1834 complex sentences gathered from newspapers, online discussion groups and blog texts, as well as audio-recorded interviews and conversations. The data thus consist of both written and oral texts as well as standard and non-standard variants. The analysis shows that the French subjunctive codes theoretical modality. The subjunctive does not determine the temporal and modal meaning of the event, but displays the event as virtual. In a complex sentence, the main clause determines the temporal and modal space within which the event coded by the subjunctive clause is interpreted. The subjunctive explicitly indicates that the space constructed in the main clause extends its scope over the subordinate clause. The subjunctive can therefore serve as a means for creating modal cohesion in the discourse. The Finnish conditional shares the function of making explicit the modal link between the components of a complex construction with the French subjunctive, but the two moods differ in their semantics. The conditional codes future time and can therefore occur only in non-factual or counterfactual contexts, whereas the event expressed by French subjunctive clauses can also be interpreted as realized. Such is the case when, for instance, generic and habitual meaning is involved. The Finnish jussive mood is used in a relatively limited number of subordinate clause types, but in these contexts its modal meaning is strikingly close to that of the French subjunctive. The permissive meaning, typical of the jussive in main clause positions, is modified in complex sentences so that it entails inter-clausal relation, namely concession. Like the French subjunctive, the jussive codes theoretical modal meaning with no implication of the truth value of the proposition. Finally, the analysis shows that verb moods mark modal cohesion, not only on the syntagmatic level (namely in complexe sentences), but also on the paradigmatic axis of discourse in order to create semantic links over entire segments of talk. In this study, the subjunctive thus appears, not as an empty category without function, as it is sometimes described, but as an open form that conveys the temporal and modal meanings emerging from the context.
Resumo:
To test the reliability of the radiocarbon method for determining root age, we analyzed fine roots (originating from the years 1985 to 1993) from ingrowth cores with known maximum root age (1 to 6 years old). For this purpose, three Scots pine (Pinus sylvestris L.) stands were selected from boreal forests in Finland. We analyzed root 14C age by the radiocarbon method and compared it with the above-mentioned known maximum fine root age. In general, ages determined by the two methods (root 14C age and ingrowth core root maximum age) were in agreement with each other for roots of small diameter (<0.5mm). By contrast, in most of the samples of fine roots of larger diameter (1.5-2mm), the 14C age of root samples of 1987-89 exceeded the ingrowth core root maximum age by 1-10 years. This shows that these roots had received a large amount of older stored carbon from unknown sources in addition to atmospheric CO2 directly from photosynthesis. We conclude that the 14C signature of fine roots, especially those of larger diameter, may not always be indicative of root age, and that further studies are needed concerning the extent of possible root uptake of older carbon and its residence time in roots. Keywords: fine root age, Pinus sylvestris, radiocarbon, root carbon, ingrowth cores, tree ring
Resumo:
The Grad–Shafranov reconstruction is a method of estimating the orientation (invariant axis) and cross section of magnetic flux ropes using the data from a single spacecraft. It can be applied to various magnetic structures such as magnetic clouds (MCs) and flux ropes embedded in the magnetopause and in the solar wind. We develop a number of improvements of this technique and show some examples of the reconstruction procedure of interplanetary coronal mass ejections (ICMEs) observed at 1 AU by the STEREO, Wind, and ACE spacecraft during the minimum following Solar Cycle 23. The analysis is conducted not only for ideal localized ICME events but also for non-trivial cases of magnetic clouds in fast solar wind. The Grad–Shafranov reconstruction gives reasonable results for the sample events, although it possesses certain limitations, which need to be taken into account during the interpretation of the model results.
Resumo:
We propose an efficient and parameter-free scoring criterion, the factorized conditional log-likelihood (ˆfCLL), for learning Bayesian network classifiers. The proposed score is an approximation of the conditional log-likelihood criterion. The approximation is devised in order to guarantee decomposability over the network structure, as well as efficient estimation of the optimal parameters, achieving the same time and space complexity as the traditional log-likelihood scoring criterion. The resulting criterion has an information-theoretic interpretation based on interaction information, which exhibits its discriminative nature. To evaluate the performance of the proposed criterion, we present an empirical comparison with state-of-the-art classifiers. Results on a large suite of benchmark data sets from the UCI repository show that ˆfCLL-trained classifiers achieve at least as good accuracy as the best compared classifiers, using significantly less computational resources.