982 resultados para Resin composite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing map for hot working of Al alloy 2014-20vol.%Al2O3 particulate-reinforced cast-plus-extruded composite material has been generated covering the temperature range 300-500 degrees C and the strain rate range 0.001-10 s(-1) based on the dynamic materials model. The efficiency eta of power dissipation given by 2m/(m + 1), where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of superplasticity has been identified, with a peak efficiency of 62% occurring at 500 degrees C and 0.001 s(-1). The characteristics of this domain have been studied with the help of microstructural evaluation and hot-ductility measurements. Microstructural instability is predicted at higher strain rates above (ls(-1)) and lower temperatures (less than 350 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-toluenesulfonic acid 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-tolenesulfonic acid, 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article addresses uncertainty effect on the health monitoring of a smart structure using control gain shifts as damage indicators. A finite element model of the smart composite plate with surface-bonded piezoelectric sensors and actuators is formulated using first-order shear deformation theory and a matrix crack model is integrated into the finite element model. A constant gain velocity/position feedback control algorithm is used to provide active damping to the structure. Numerical results show that the response of the structure is changed due to matrix cracks and this change can be compensated by actively tuning the feedback controller. This change in control gain can be used as a damage indicator for structural health monitoring. Monte Carlo simulation is conducted to study the effect of material uncertainty on the damage indicator by considering composite material properties and piezoelectric coefficients as independent random variables. It is found that the change in position feedback control gain is a robust damage indicator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, variational principle is used for dynamic modeling of an Ionic Polymer Metal Composite (IPMC) flapping wing. The IPMC is an Electro-active Polymer (EAP) which is emerging as a useful smart material for `artificial muscle' applications. Dynamic characteristics of IPMC flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. A comparative study of the performances of three IPMC flapping wings is conducted. Among the three species, it is found that thrust force produced by the IPMC flapping wing of the same size as Anax Parthenope Julius wing is maximum. Lift force produced by the IPMC wing of the same size as Sympetrum Frequens wing is maximum and the wing is suitable for low speed flight. The numerical results in this paper show that dragonfly inspired IPMC flapping wings are a viable contender for insect scale flapping wing micro air vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear static and dynamic response analyses of a clamped. rectangular composite plate resting on a two-parameter elastic foundation have been studied using von Karman's relations. Incorporating the material damping, the governing coupled, nonlinear partial differential equations are obtained for the plate under step pressure pulse load excitation. These equations have been solved by a one-term solution and by applying Galerkin's technique to the deflection equation. This yields an ordinary nonlinear differential equation in time. The nonlinear static solution is obtained by neglecting the time-dependent variables. Thc nonlinear dynamic damped response is obtained by applying the ultraspherical polynomial approximation (UPA) technique. The influences of foundation modulus, shear modulus, orthotropy, etc. upon the nonlinear static and dynamic responses have been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article provides a detailed computational analysis of the reaction of dense nanofilms and the heat transfer characteristics on a composite substrate. Although traditional energetic compounds based on organic materials have similar energy per unit weight, non-organic material in nanofilm configuration offers much higher energy density and higher flame speed. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The numerical analysis of the thermal transport of the reacting film deposited on the substrate combined a hybrid approach in which a traditional two-dimensional black box theory was used in conjunction with the sandwich model to estimate the appropriate heat flux on the substrate accounting for the heat loss to the surroundings. A procedure to estimate this heat flux using stoichiometric calculations is provided. This work highlights two important findings. One is that there is very little difference in the temperature profiles between a single substrate of silica and a composite substrate of silicon silica. Secondly, with increase in substrate thickness, the quenching effect is progressively diminished at a given speed. These findings show that the composite substrate is effective and that the average speed and quenching of flames depend on the thickness of the silica substrate, and can be controlled by a careful choice of the substrate configuration. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E glass epoxy laminates of thicknesses in the range 2-5 mm were subjected to repeated impacts. For each thickness the number of hits to cause tup penetration was determined and the value of this number was higher the larger the thickness of the laminate tested. The C-scan, before and after impact, was done to obtain information regarding flaw distribution. Short beam shear test samples were made from locations at fixed distances from impact point and tested. The samples closer to the zone of impact showed lower strength values. Scanning fractography revealed shear deformation features for these samples and brittle fracture features for the region near the zone of impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical buckling loads of laminated fibre-reinforced plastic square panels have been obtained using the finite element method. Various boundary conditions, lay-up details, fibre orientations, cut-out sizes are considered. A 36 degrees of freedom triangular element, based on the classical lamination theory (CLT) has been used for the analysis. The performance of this element is validated by comparing results with some of those available in literature. New results have been given for several cases of boundary conditions for [0°/ ± 45°/90°]s laminates. The effect of fibre-orientation in the ply on the buckling loads has been investigated by considering [±?]6s laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buckling of discretely stiffened composite cylindrical panels made of repeated sublaminate construction is studied using a finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate, which has a smaller number of plies. This paper deals with the determination of the optimum lay-up for buckling by ranking of such stiffened (longitudinal and hoop) composite cylindrical panels. For this purpose we use the particularized form of a four-noded, 48 degrees of freedom doubly curved quadrilateral thin shell finite element together with a fully compatible two-noded, 16 degrees of freedom composite stiffener element. The computer program developed has been used, after extensive checking for correctness, to obtain an optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for a specified thickness of typical stiffened composite cylindrical panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear finite element analysis is used for the estimation of damage due to low-velocity impact loading of laminated composite circular plates. The impact loading is treated as an equivalent static loading by assuming the impactor to be spherical and the contact to obey Hertzian law. The stresses in the laminate are calculated using a 48 d.o.f. laminated composite sector element. Subsequently, the Tsai-Wu criterion is used to detect the zones of failure and the maximum stress criterion is used to identify the mode of failure. Then the material properties of the laminate are degraded in the failed regions. The stress analysis is performed again using the degraded properties of the plies. The iterative process is repeated until no more failure is detected in the laminate. The problem of a typical T300/N5208 composite [45 degrees/0 degrees/-45 degrees/90 degrees](s) circular plate being impacted by a spherical impactor is solved and the results are compared with experimental and analytical results available in the literature. The method proposed and the computer code developed can handle symmetric, as well as unsymmetric, laminates. It can be easily extended to cover the impact of composite rectangular plates, shell panels and shells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat-up times derived from studies on the ignition characteristics of a few model composite solid propellants, containing polystyrene, carboxy-terminated polybutadiene, plasticised polyvinyl chloride and polyphenol formaldehyde as binders, show that they are directly proportional to the mass of the sample and inversely proportional to the hear flux. Propellant weight-loss prior to ignition and high pressure ignition temperature data on the propellants, ammonium per chlorate, and binders show that the ignition is governed by the gasification of the binder pyrolysis products. The activation energy for the gasification of the pyrolysed polymer products corresponds to their ignition behaviour suggesting that propellant ignition is controlled by the binder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 48 d.o.f., four-noded quadrilateral laminated composite shell finite element is particularised to a sector finite element and is used for the large deformation analysis of circular composite laminated plates. The strain-displacement relationships for the sector element are obtained by reducing those of the quadrilateral shell finite element by substituting proper values for the geometric parameters. Subsequently, the linear and tangent stiffness matrices are formulated using conventional methods. The Newton-Raphson method is employed as the nonlinear solution technique. The computer code developed is validated by solving an isotropic case for which results are available in the literature. The method is then applied to solve problems of cylindrically orthotropic circular plates. Some of the results of cylindrically orthotropic case are compared with those available in the literature. Subsequently, application is made to the case of laminated composite circular plates having different lay-up schemes. The computer code can handle symmetric/unsymmetric lay-up schemes. The large displacement analysis is useful in estimating the damage in composite plates caused by low-velocity impact.