923 resultados para Raios X - Medidas de segurança


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The limits to inform is about the character stico of basic, quimica, mineralogical and mechaniques of matlaughed material used in the manufacturing process the product certified in economic region the Cariri, specifically in the city of Crato, Ceará state, motivated the development of this work, since in this region the exist ing economic context that a general appear as important in the production chains. Were made twentyfive soils-test specimen collection and the study was performed to differentiate the mat laugh materials of variaveis processing of mathing raw materials in the factory The product mica monkeys by extrusion and pressing. The results were obtained ap s as analyzes: grain size, index of plasticity, fluoresce incidence X-ray difration the X-ray, and analyzes thermicals and properties technological. through s of curves gresifica returned to was a comparison between the retro the linear, absorb to water, porosity and bulk density. the results show that the excellent distribution and character acceptable available for the processing of the structure color dark red. needing, therefore, of the mixture of a less plastic clay with thick granulation, that works as plasticity reducer. In spite of the different resignation forms for prensagem and extrusion, the characteristics of absorption of water and rupture tension the flexing was shown inside of the patterns of ABNT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to investigate the use of cane sugar ashes from small-scale stills of Eunápolis region, state of Bahia, in pottery mass that can be developed as porcelain stoneware. Bahia is the second largest producer of rum distillery in Brazil. In the production of rum is produced residue called bagasse, which is used to generate electricity in Power plants and in the distillery itself, generating ashes as residue, which is played in nature, causing environmental damage. We studied 5 (five) formulations of 0% 10% 20%, 30% and 40% by weight of the ash, without ignition and 3 (three) formulations of 10%, 20% and 30% with gray ash temperature of 1250ºC. The formulation at 0% by weight of ash was used for a comparison between the traditional mass of porcelain stoneware and the masses with the addition of ash calcined, replacing feldspar. The percentage by weight of kaolin and of Clay was kept the same, 30%, and all raw materials were derived from the state of Bahia. The samples were made in uniaxial array with dimensions of (60 x 20 x 5) mm and compressed to a pressure of 45 MPa. Assays were performed to characterize the raw by X-ray fluorescence, X-ray diffraction, ATD and ATG and Dilatometric analysis. The samples were sintered at temperatures of 1100°C, 1150°C, 1200°C and 1250°C, for the specimens with the ashes without ash and 1150° C and 1200° C for specimens with the gray level of calcined 60 minutes. and then we made a cooling ramp with the same rate of warming until reach ambient temperature. The sintered bodies were characterized by water absorption, porosity, linear shrinkage, bending strength and XRD of the fracture surface and the results analyzed. It was proven, after results of tests performed, that it is possible to use the ash residue of sugar cane bagasse on ceramic coating with the addition of up to 10% wt of the residue ash

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil is the world s leading coffee producer. In 2008, 45.99 million of 60 kg bags of benefited coffee were produced. In the process of improvement 50% is grain and 50% is husk, thus, 1.38 million tons of coffee husk are produced annually. The husk is used as combustible in the drying and improvement ovens in the coffee farms, generating ash as residue. These ashes contain a high concentration of alkaline metals and earth metals, mainly K2O and CaO. This work studies the use of this residue in the ceramic tiles industry, as fluxing agents in substitution to the feldspar. Ten mixtures with equal ratios of clay and kaolin, proceeding from Bahia and the residue (varying from 30 to 5%) were defined and produced in uniaxial tool die of 60x20mm with approximately 5 mm of thickness and 45MPa compacting pressure. The samples were fired in four different temperatures: 1100 °C, 1150 °C, 1185 °C and 1200 °C during 60 minutes and characterized by means of X-ray fluorescence, X-ray diffraction, gravimetric thermal analysis and differential thermal analysis. The results of water absorption, apparent porosity, linear shrinkage, XRD, dilatometry, flexural strength and SEM were also analysed. The test specimen with addition of 10% of ash fired in 1200 °C resulted in 0.18% water absorption and 40.77 MPa flexural strength, being classified as porcelain stoneware tiles according to ABNT, UNI and ISO norms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is analyzed through the concepts of tribology and mechanical contact and damage the suggestion of implementing a backup system for traction and passage of Pipeline Inspection Gauge (Pig) from the inside of pipelines. In order to verify the integrity of the pipelines, it is suggested the possibility of displacement of such equipment by pulling wires with steel wires. The physical and mechanical characteristics of this method were verified by accelerated tests in the laboratory in a tribological pair, wire versus a curve 90. It also considered the main mechanisms of wear of a sliding system with and without lubricant, in the absence and presence of contaminants. To try this, It was constructed a test bench able to reproduce a slip system, work on mode back-and-forth ("reciprocation"). It was used two kinds of wires, a galvanized steel and other stainless steel and the results achieved using the two kinds of steel cables were compared. For result comparative means, it was used steel cables with and without coating of Poly Vinyl Chloride (PVC). The wires and the curves of the products were characterized using metallographic analysis, microhardness Vickers tests, X-ray diffraction (XRD), X-Ray Refraction (XRF) and tensile tests. After the experiments were analyzed some parameters that have been measurable, it demonstrates to the impracticality of this proposed method, since the friction force and the concept of alternating request at the contact between the strands of wire and the inner curves that are part ducts caused severe wear. These types of wear are likely to cause possible failures in future products and cause fluid leaks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sector of civil construction is strongly related to the red ceramic industry. This sector uses clay as raw material for manufacturing of various products such as ceramic plates. In this study, two types of clay called clay 1 and clay 2 were collected on deposit in Ielmo Marinho city (RN) and then characterized by thermogravimetric analysis (TG/DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), rational analysis and particle size distribution and dilatometric analyses. Ceramic plates were manufactured by uniaxial pressing and by extrusion. The plates obtained by pressing were produced from the four formulations called 1, 2, 3 and 4, which presented, respectively, the following proportions by mass: 66.5% clay 1 and 33.5% clay 2, 50% clay 1 and 50% clay 2, 33.5% clay 1 and 66.5% clay 2, 25% clay 1 and 75% clay 2. After firing at 850, 950 and 1050 °C with heating rate of 10 °C/min and soaking time of 30 minutes, the following technological properties were determined: linear firing shrinkage, water absorption, apparent porosity, apparent specific mass and tensile strength (3 points). The formulation containing 25% clay 1 produced plates with most satisfactory results of water absorption and mechanical resistance, because of that it was chosen for manufacturing plates by extrusion. A single firing cycle was established for these plates, which took place as follow: heating rate of 2 °C/min up to 600 ºC with soaking time of 60 minutes, followed by heating using the same rate up to 1050 ºC with soaking time of 30 minutes. After this cycle, the same technological properties investigated in the plates obtained by pressing were determined. The results indicate (according to NRB 13818/1997) that the plates obtained by pressing from the mixture containing 25 wt% clay 1, after firing at 1050 °C, reach the specifications for semi-porous coating (BIIb). On the other hand, the plates obtained by extrusion were classified as semi-stoneware (group AIIa)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, were produced ceramic matrix composites based in SiCxOy e Al2O3 reinforced with NbC, by hydrosilylation reaction between D4Vi and poly(methylhydrosiloxane) mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. After the mixture and compactation at 80ºC (warm pressing), the samples were pyrolised at 1200 and 1400ºC and infiltred with ICZ and LZSA respectively, and thermically, physical and structurally characterized by X-ray diffraction, density and porosity, flexural mechanical strength and fracture surface by scanning electron microscopy. The yield ceramic obtained after pyrolysis for studied composition at 1200ºC was 95%. The obtained phases had been identified as being Al3Nb, NbSi2 and NbC. The composite material presented apparent porosity varying of 15 up to 32% and mechanical flexural strenght of 32 up to 37,5MPa. After the fracture surface analysis, were observed a phases homogeneous dispersion, with some domains of amorphous and crystalline aspect. The samples that were submitted the infiltration cycle presented a layer next the surface with reduced pores number in relation to the total volume

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aluminothermic reduction consists in an exothermic reaction between a metallic oxide and aluminum to produce the metal and the scum. The extracted melted metal of that reaction usually comes mixed with particles of Al2O3 resulting of the reduction, needing of subsequent refine to eliminate the residual impure as well as to eliminate porosities. Seeking to obtain a product in powder form with nanometric size or even submicrometric, the conventional heat source of the reaction aluminothermic , where a resistor is used (ignitor) as ignition source was substituted, for the plasma, that acts more efficient way in each particle of the sample. In that work it was used as metallic oxide the niobium pentoxide (Nb2O5) for the exothermal reaction Nb2O5 + Al. Amounts stoichiometric, substoichiometric and superestoichiometric of aluminum were used. The Nb2O5 powder was mixed with aluminum powder and milled in planetarium of high energy for a period of 6 hours. Those powders were immerged in plasm that acts in a punctual way in each particle, transfering heat, so that the reaction can be initiate and spread integrally for the whole volume of the particle. The mixture of Nb2O5 + Al was characterized through the particle size analysis by laser and X-ray diffraction (DRX) and the obtained product of reaction was characterized using the electronic microscopy of sweeping (MEV) and the formed phases were analyzed by DRX. Niobium powders with inferior sizes to 1 mm were obtained by that method. It is noticed, through the analysis of the obtained results, that is possible to accomplish the aluminothermic reduction process by plasma ignition with final particles with inferior sizes to the original oxide

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lanthanum strontium cobalt iron oxide (La1-xSrxCo1-yFeyO3 LSCF) is the most commonly used material for application as cathode in Solid Oxide Fuel Cells (SOFCs), mainly due to their high mixed ionic electronic conductivity between 600 and 800ºC. In this study, LSCF powders with different compositions were synthesized via a combination between citrate and hydrothermal methods. As-prepared powders were calcined from 700 to 900°C and then characterized by X-ray fluorescence, X-ray diffraction, thermal analyses, particle size analyses, nitrogen adsorption (BET) and scanning electronic microscopy. Films of composition La0,6Sr0,4Co0,2Fe0,8O3 (LSCF6428), powders calcined at 900°C, were screen-printed on gadolinium doped ceria (CGO) substrates and sintered between 1150 and 1200°C. The effects of level of sintering on the microstructure and electrochemical performance of electrodes were evaluated by scanning electronic microscopy and impedance spectroscopy. Area specific resistance (ASR) exhibited strong relation with the microstructure of the electrodes. The best electrochemical performance (0.18 ohm.cm2 at 800°C) was obtained for the cathode sintered at 1200°C for 2 h. The electrochemical activity can be further improved through surface activation by impregnation with PrOx, in this case the electrode area specific resistance decreases to values as low as 0.12 ohm.cm2 (800°C), 0.17 ohm.cm2 (750°C) and 0.31 ohm.cm2 (700°C). The results indicate that the citrate-hydrothermal method is suitable for the attainment of LSCF particulates with potential application as cathode component in intermediate temperature solid oxide fuel cells (IT-SOFCs)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, ceramic products have become indispensable to the technological development of humanity, occupying important positions in scientific production and consequently in industrial production. One area of the economy that continues to absorb large amounts of the products of this sector is Construction. Among the branches of the ceramic industry, there are the red ceramic industry which is traditionally the basis of that economic sector. Among the reasons for which the red ceramic industry became popular in the country, and specifically in Rio Grande do Norte, is the abundance of this raw material, easily found throughout the national territory. However, it appears that the red ceramic industry has deficiencies in technology and skilled labor, resulting in the production of ceramic goods with low added value. Among the factors that determine the quality of the ceramic products red has the proper formulation of the ceramic mass, the conformation and the firing temperature. Thus, the overall goal of this work is to study the mineralogical and technological properties, two clays from the region of the Wasteland Potiguar industrial ceramist. Therefore, the raw materials were characterized by analysis of Xray diffraction (XRD) analysis, X-ray fluorescence (XRF), particle size analysis (FA), scanning electron microscopy (SEM), optical microscopy (OM ), plasticity index (PI), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The technological properties of the material were analyzed by water absorption tests (AA%) porosity (% PA), the linear shrinkage (RT%), apparent density (MEA), loss on ignition (PF%) and flexural strength three points (TRF)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerald mining is an important area of the economy in Brazil, country which is in second place among the exporting nations of this gem. Due to the process of extraction, a great amount of reject is generated. Since there is no appropriate destination, the reject is abandoned around the mining industries, contributing to environment degradation. Nowadays, some of the most relevant things to an industry in general are: energy conservation, cost reduction, quality and productivity enhancement. The production of isolating, transformed refractory materials achieves the sustainability dimension when protection of the environment is incorporated to such process. This work investigates the use of emerald mining rejects in the ceramic body of refractory materials, aiming at obtaining a product whose characteristics are compatible with commercial products and, at the same time, allow the use of such rejects to solve the environmental issue caused by its disposal in nature. X-ray fluorescence analysis show that the emerald reject obtained after the flotation to extract molybdenum and mica has 70% of silica and alumina (SiO2+Al2O3) and 21% of a basic oxides and alkaline metals and earthy alkaline mixture (Na2O, K2O, CaO e MgO). Because of the significant amount of silica and alumina present in the reject, four refractory ceramic bodies were prepared. Samples with a rectangular shape and dimensions 100x50x10 mm were pressed in a steel mold at 27,5 MPa and sintered at 1200ºC for 40 min. under environment atmosphere in a resistive oven. The sintered samples were characterized in relation to the chemical composition (FRX), mineralogical composition (DRX), microstructure (MEV) and physical and mechanical properties. The results indicate that the mixture with 45% of reject, 45% of alumina and 10% of kaolin presents a refractory quality of 1420ºC, dimensional linear variation below 2.00%, apparent specific mass of 1,56 g/cm3 and porosity of 46,68%, which demonstrates the potential use of the reject as raw material for the industry of isolating transformed refractory materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The segment of the structural ceramics industry is one of the most important to the economy of Rio Grande do Norte. The supply chain makes a total of 206 companies that are distributed in 39 counties, concentrated in three regional centers: Seridó Apodi / Assu and great Natal. The ceramic industry in the state is around 80 million pieces per month, with 50,186 million of these tiles, which makes the Rio Grande do Norte one of the largest manufacturers of product in the Country. Different ceramic products can be manufactured by mixing two or more clays and accessory minerals. Mixtures acquire characteristics and form what is called the ceramic body. Refractory masses have a high melting point and thermal shock support. Its composition contains refractory clays with a little iron oxide and material fluxes. A line of semi-refractory ceramic products that stands out for its high added value are the bricks in ivory or red, used in building barbecues, fireplaces, wood stoves and braziers. The aim of this study was to use alumina-clay or silica- alumina-clay to the industrial RN, for the production of refractory bricks semi-refractory burning light. Clay and Kaolin were characterized for their chemical and mineralogical composition, immediately after ceramic bodies were made with different concentrations of the components, they were raised, pressed and sintered. After sintering the resulting products were characterized in terms of mechanical, thermal and dimensional than the characterization by X-ray diffraction and scanning electron microscopy. After obtaining the results, we concluded that the studied clay can be used for the production of semi-refractory bricks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work is the addition of a metallic ion, of the metal Manganese, in a clay of Rio Grande do Norte state for structural ceramics use, the objective this study was to assess the evolution of ceramic properties. The clay was characterized by Chemical and Thermal analysis and Xray difraction. The metallic ion was added in the clay as aqueous solutions at concentrations of 100, 150 and 200 mg / L. The molded by extrusion and the burned were temperatures at 850, 950, 1050 and 1150 º C. Was made Chemical Analysis and investigated the following parameters environmental and ceramic: Solubility, Colour, Linear Retraction (%), Water Absorption (%), Gresification Curves, Apparent Porosity (%), Apparent Specific Mass (g/cm3) and Flexion Rupture Module (kgf/cm2). The results showed that increasing the concentration of metallic ion, properties such as Apparent Porosity (%), Water Absorption (%) decreases and the Flexion Rupture Module (kgf/cm2) increases with increasing temperature independent of the concentration of the ion. The gresification curves showed that the optimum firing temperatures were in the range between 950 and 1050 ° C. The evaluation of the properties showed that the ceramic material can be studied its use in solid brick and ceramic materials with structural function of filling. The results of solubility showed that the addition of ion offers no risk to the environment