997 resultados para RT-LAB simulation
Resumo:
In many real world contexts individuals find themselves in situations where they have to decide between options of behaviour that serve a collective purpose or behaviours which satisfy one’s private interests, ignoring the collective. In some cases the underlying social dilemma (Dawes, 1980) is solved and we observe collective action (Olson, 1965). In others social mobilisation is unsuccessful. The central topic of social dilemma research is the identification and understanding of mechanisms which yield to the observed cooperation and therefore resolve the social dilemma. It is the purpose of this thesis to contribute this research field for the case of public good dilemmas. To do so, existing work that is relevant to this problem domain is reviewed and a set of mandatory requirements is derived which guide theory and method development of the thesis. In particular, the thesis focusses on dynamic processes of social mobilisation which can foster or inhibit collective action. The basic understanding is that success or failure of the required process of social mobilisation is determined by heterogeneous individual preferences of the members of a providing group, the social structure in which the acting individuals are contained, and the embedding of the individuals in economic, political, biophysical, or other external contexts. To account for these aspects and for the involved dynamics the methodical approach of the thesis is computer simulation, in particular agent-based modelling and simulation of social systems. Particularly conductive are agent models which ground the simulation of human behaviour in suitable psychological theories of action. The thesis develops the action theory HAPPenInGS (Heterogeneous Agents Providing Public Goods) and demonstrates its embedding into different agent-based simulations. The thesis substantiates the particular added value of the methodical approach: Starting out from a theory of individual behaviour, in simulations the emergence of collective patterns of behaviour becomes observable. In addition, the underlying collective dynamics may be scrutinised and assessed by scenario analysis. The results of such experiments reveal insights on processes of social mobilisation which go beyond classical empirical approaches and yield policy recommendations on promising intervention measures in particular.
Resumo:
Bei der Auslegung von Trocknungsprozessen empfindlicher biologischer Güter spielt die Produktqualität eine zunehmend wichtige Rolle. Obwohl der Einfluss der Trocknungsparameter auf die Trocknungskinetik von Äpfeln bereits Gegenstand vieler Studien war, sind die Auswirkungen auf die Produktqualität bisher kaum bekannt. Die Untersuchung dieses Sachverhalts und die Entwicklung geeigneter Prozessstrategien zur Verbesserung der Qualität des resultierenden Produkts, waren das Ziel der vorliegenden Arbeit. In einem ersten Schritt wurden zunächst umfangreiche stationäre Grundlagenversuche durchgeführt, die zeigten, dass eine Lufttemperatur im höheren Bereich, eine möglichst hohe Luftgeschwindigkeit und eine niedrige Taupunkttemperatur zur geringsten Trocknungszeit bei gleichzeitig guter optischer Qualität führt. Die Beurteilung dieser Qualitätsveränderungen erfolgte mit Hilfe einer neu eingeführten Bezugsgröße, der kumulierten thermischen Belastung, die durch das zeitliche Integral über der Oberflächentemperatur repräsentiert wird und die Vergleichbarkeit der Versuchsergebnisse entscheidend verbessert. Im zweiten Schritt wurden die Ergebnisse der Einzelschichtversuche zur Aufstellung eines numerischen Simulationsmodells verwendet, welches sowohl die entsprechenden Transportvorgänge, als auch die Formveränderung des Trocknungsgutes berücksichtigt. Das Simulationsmodell sowie die experimentellen Daten waren die Grundlage zur anschließenden Entwicklung von Prozessstrategien für die konvektive Trocknung von Äpfeln, die die resultierende Produktqualität, repräsentiert durch die Produktfarbe und –form, verbessern und gleichzeitig möglichst energieeffizient sein sollten. In einem weiteren Schritt wurde die Übertragbarkeit auf den industriellen Maßstab untersucht, wobei die entsprechenden Prozessstrategien an einer neu entwickelten, kostengünstigen Trocknungsanlage erfolgreich implementiert werden konnten. Das Ziel einer verbesserten Produktqualität konnte mit Hilfe unterschiedlicher instationärer Trocknungsschemata sowohl am Einzelschichttrockner, als auch im größeren Maßstab erreicht werden. Das vorgestellte numerische Simulationsmodell zeigte auch bei der Vorhersage des instationären Trocknungsprozesses eine hohe Genauigkeit und war außerdem in der Lage, den Trocknungsverlauf im industriellen Maßstab zuverlässig voraus zu berechnen.
Resumo:
Die Miniaturisierung von konventioneller Labor- und Analysetechnik nimmt eine zentrale Rolle im Bereich der allgemeinen Lebenswissenschaften und medizinischen Diagnostik ein. Neuartige und preiswerte Technologieplattformen wie Lab-on-a-Chip (LOC) oder Mikrototalanalysesysteme (µTAS) versprechen insbesondere im Bereich der Individualmedizin einen hohen gesellschaftlichen Nutzen zur frühzeitigen und nichtinvasiven Diagnose krankheitsspezifischer Indikatoren. Durch den patientennahen Einsatz preiswerter und verlässlicher Mikrochips auf Basis hoher Qualitätsstandards entfallen kostspielige und zeitintensive Zentrallaboranalysen, was gleichzeitig Chancen für den globalen Einsatz - speziell in Schwellen- und Entwicklungsländern - bietet. Die technischen Herausforderungen bei der Realisierung moderner LOC-Systeme sind in der kontrollierten und verlässlichen Handhabung kleinster Flüssigkeitsmengen sowie deren diagnostischem Nachweis begründet. In diesem Kontext wird der erfolgreichen Integration eines fernsteuerbaren Transports von biokompatiblen, magnetischen Mikro- und Nanopartikeln eine Schlüsselrolle zugesprochen. Die Ursache hierfür liegt in der vielfältigen Einsetzbarkeit, die durch die einzigartigen Materialeigenschaften begründet sind. Diese reichen von der beschleunigten, aktiven Durchmischung mikrofluidischer Substanzvolumina über die Steigerung der molekularen Interaktionsrate in Biosensoren bis hin zur Isolation und Aufreinigung von krankheitsspezifischen Indikatoren. In der Literatur beschriebene Ansätze basieren auf der dynamischen Transformation eines makroskopischen, zeitabhängigen externen Magnetfelds in eine mikroskopisch veränderliche potentielle Energielandschaft oberhalb magnetisch strukturierter Substrate, woraus eine gerichtete und fernsteuerbare Partikelbewegung resultiert. Zentrale Kriterien, wie die theoretische Modellierung und experimentelle Charakterisierung der magnetischen Feldlandschaft in räumlicher Nähe zur Oberfläche der strukturierten Substrate sowie die theoretische Beschreibung der Durchmischungseffekte, wurden jedoch bislang nicht näher beleuchtet, obwohl diese essentiell für ein detailliertes Verständnis der zu Grunde liegenden Mechanismen und folglich für einen Markteintritt zukünftiger Geräte sind. Im Rahmen der vorgestellten Arbeit wurde daher ein neuartiger Ansatz zur erfolgreichen Integration eines Konzepts zum fernsteuerbaren Transport magnetischer Partikel zur Anwendung in modernen LOC-Systemen unter Verwendung von magnetisch strukturierten Exchange-Bias (EB) Dünnschichtsystemen verfolgt. Die Ergebnisse zeigen, dass sich das Verfahren der ionenbe-schussinduzierten magnetischen Strukturierung (IBMP) von EB-Systemen zur Herstellung von maßgeschneiderten magnetischen Feldlandschaften (MFL) oberhalb der Substratoberfläche, deren Stärke und räumlicher Verlauf auf Nano- und Mikrometerlängenskalen gezielt über die Veränderung der Materialparameter des EB-Systems via IBMP eingestellt werden kann, eignet. Im Zuge dessen wurden erstmals moderne, experimentelle Verfahrenstechniken (Raster-Hall-Sonden-Mikroskopie und rastermagnetoresistive Mikroskopie) in Kombination mit einem eigens entwickelten theoretischen Modell eingesetzt, um eine Abbildung der MFL in unterschiedlichen Abstandsbereichen zur Substratoberfläche zu realisieren. Basierend auf der quantitativen Kenntnis der MFL wurde ein neuartiges Konzept zum fernsteuerbaren Transport magnetischer Partikel entwickelt, bei dem Partikelgeschwindigkeiten im Bereich von 100 µm/s unter Verwendung von externen Magnetfeldstärken im Bereich weniger Millitesla erzielt werden können, ohne den magnetischen Zustand des Substrats zu modifizieren. Wie aus den Untersuchungen hervorgeht, können zudem die Stärke des externen Magnetfelds, die Stärke und der Gradient der MFL, das magnetfeldinduzierte magnetische Moment der Partikel sowie die Größe und der künstlich veränderliche Abstand der Partikel zur Substratoberfläche als zentrale Einflussgrößen zur quantitativen Modifikation der Partikelgeschwindigkeit genutzt werden. Abschließend wurde erfolgreich ein numerisches Simulationsmodell entwickelt, das die quantitative Studie der aktiven Durchmischung auf Basis des vorgestellten Partikeltransportkonzepts von theoretischer Seite ermöglicht, um so gezielt die geometrischen Gegebenheiten der mikrofluidischen Kanalstrukturen auf einem LOC-System für spezifische Anwendungen anzupassen.
Resumo:
The next generations of both biological engineering and computer engineering demand that control be exerted at the molecular level. Creating, characterizing and controlling synthetic biological systems may provide us with the ability to build cells that are capable of a plethora of activities, from computation to synthesizing nanostructures. To develop these systems, we must have a set of tools not only for synthesizing systems, but also designing and simulating them. The BioJADE project provides a comprehensive, extensible design and simulation platform for synthetic biology. BioJADE is a graphical design tool built in Java, utilizing a database back end, and supports a range of simulations using an XML communication protocol. BioJADE currently supports a library of over 100 parts with which it can compile designs into actual DNA, and then generate synthesis instructions to build the physical parts. The BioJADE project contributes several tools to Synthetic Biology. BioJADE in itself is a powerful tool for synthetic biology designers. Additionally, we developed and now make use of a centralized BioBricks repository, which enables the sharing of BioBrick components between researchers, and vastly reduces the barriers to entry for aspiring Synthetic Biologists.
Resumo:
The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.
Resumo:
Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model development is needed, as multiple parties could be involved in the development process. The Grid provides a platform for coordinated resource sharing and application development and execution. In this paper, we survey existing technologies in modeling and simulation, and we focus on interoperability and composability of simulation components for both simulation development and execution. We also present our recent work on an HLA-based simulation framework on the Grid, and discuss the issues to achieve composability.
Resumo:
Electroosmotic flow is a convenient mechanism for transporting polar fluid in a microfluidic device. The flow is generated through the application of an external electric field that acts on the free charges that exists in a thin Debye layer at the channel walls. The charge on the wall is due to the chemistry of the solid-fluid interface, and it can vary along the channel, e.g. due to modification of the wall. This investigation focuses on the simulation of the electroosmotic flow (EOF) profile in a cylindrical microchannel with step change in zeta potential. The modified Navier-Stoke equation governing the velocity field and a non-linear two-dimensional Poisson-Boltzmann equation governing the electrical double-layer (EDL) field distribution are solved numerically using finite control-volume method. Continuities of flow rate and electric current are enforced resulting in a non-uniform electrical field and pressure gradient distribution along the channel. The resulting parabolic velocity distribution at the junction of the step change in zeta potential, which is more typical of a pressure-driven velocity flow profile, is obtained.
Resumo:
This paper presents the distributed environment for virtual and/or real experiments for underwater robots (DEVRE). This environment is composed of a set of processes running on a local area network composed of three sites: 1) the onboard AUV computer; 2) a surface computer used as human-machine interface (HMI); and 3) a computer used for simulating the vehicle dynamics and representing the virtual world. The HMI can be transparently linked to the real sensors and actuators dealing with a real mission. It can also be linked with virtual sensors and virtual actuators, dealing with a virtual mission. The aim of DEVRE is to assist engineers during the software development and testing in the lab prior to real experiments
Resumo:
Discusses the influence of Nyquist sampling theory on carrier communication simulations.
Resumo:
Simulation of AM, QAM, complex QAM, 4QAM and 16QAM carrier communication schemes in Matlab.
Resumo:
Resumen tomado de la publicación