946 resultados para RESIDENCE TIME DISTRIBUTION
Resumo:
Crossroads, crucibles and refuges are three words that may describe natural coastal lagoon environments. The words refer to the complex mix of marine and terrestrial influences, prolonged dilution due to the semi-enclosed nature and the function of a habitat for highly diverse plant and animal communities, some of which are endangered. To attain a realistic picture of the present situation, high vulnerability to anthropogenic impact should be added to the description. As the sea floor in coastal lagoons is usually entirely photic, macrophyte primary production is accentuated compared with open sea environments. There is, however, a lack of proper knowledge on the importance of vegetation for the general functioning of coastal lagoon ecosystems. The aim of this thesis is to assess the role of macrophyte diversity, cover and species identity over temporal and spatial scales for lagoon functions, and to determine which steering factors primarily restrict the qualitative and quantitative composition of vegetation in coastal lagoons. The results are linked to patterns of related trophic levels and the indicative potential of vegetation for assessment of general conditions in coastal lagoons is evaluated. This thesis includes five field studies conducted in flads and glo-flads in the brackish water northern Baltic Sea. Flads and glo-flads are defined as a Baltic variety of coastal lagoons, which due to an inlet threshold and post-glacial landuplift slowly will be isolated from the open sea. This process shrinks inlet size, increases exposure and water retention, and is called habitat isolation. The studied coastal lagoons are situated in the archipelago areas of the eastern coast of Sweden, the Åland Islands and the south-west mainland of Finland, where land-uplift amounts to ca. 5 mm/ per year. Out of 400 evaluated sites, a total of 70 lagoons varying in inlet size, archipelago position and anthropogenic influence to cover for essential environmental variation were chosen for further inventory. Vegetation composition, cover and richness were measured together with several hydrographic and morphometric variables in the lagoons both seasonally and inter-annually to cover for general regional, local and temporal patterns influencing lagoon and vegetation development. On smaller species-level scale, the effects of macrophyte species identity and richness for the fish habitat function were studied by examining the influence of plant interaction on juvenile fish diversity. Thus, the active election of plant monoand polycultures by fish and the diversity of fish in the respective culture were examined and related to plant height and water depth. The lagoons and vegetation composition were found to experience a regime shift initiated by increased habitat isolation along with land-uplift. Vegetation composition altered, richness decreased and cover increased forming a less isolated and more isolated regime, named the vascular plant regime and charophyte regime, respectively according to the dominant vegetation. As total phosphorus in the water, turbidity and the impact of regional influences decreased in parallel, the dominance of charophytes and increasing cover seemed to buffer and stabilize conditions in the charophyte regime and indicated an increased functional role of vegetation for the lagoon ecosystem. The regime pattern was unaffected by geographical differences, while strong anthropogenic impact seemed to distort the pattern due to loss of especially Chara tomentosa L. in the charophyte regime. The regimes were further found unperturbed by short-time temporal fluctuations. In fact the seasonal and inter-annual dynamics reinforced the functional difference between the regimes by the increasing role of vegetation along habitat isolation and the resemblance to lake environments for the charophyte regime. For instance, greater total phosphorus and chlorophyll a concentrations in the water in the beginning of the season in the charophyte regime compared with the vascular plant regime presented a steeper reduction to even lower values than in the vascular plant regime along the season. Despite a regional importance and positive relationship of macrophyte diversity in relation to trophic diversity, species identity was underlined in the results of this thesis, especially with decreasing spatial scale. This result was supported partly by the increased role of charophytes in the functioning of the charophyte regime, but even more explicitly by the species-specific preference of juvenile fish for tall macrophyte monocultures. On a smaller species-level scale, tall plant species in monoculture seemed to be able to increase their length, indicating that negative selection forms preferred habitat structures, which increase fish diversity. This negative relationship between plant and fish diversity suggest a shift in diversity patterns among trohic levels on smaller scale. Thus, as diversity patterns seem complex and diverge among spatial scales, it might be ambiguous to extend the understanding of diversity relationships from one trophic level to the other. All together, the regime shift described here presents similarities to the regime development in marine lagoon environments and shallow lakes subjected to nutrient enrichment. However, due to nutrient buffering by vegetation with increased isolation and water retention as a consequence of the inlet threshold, the development seems opposite to the course along an eutrophication gradient described in marine lagoons lacking an inlet threshold, where the role of vegetation decreases. Thus, the results imply devastating consequences of inlet dredging (decreasing isolation) in terms of vegetation loss and nutrient release, and call for increased conservational supervision. Especially the red listed charophytes would suffer negatively from such interference and the consequences are likely to also deteriorate juvenile fish production. The fact that a new species to Finland, Chara connivens Salzm. Ex. Braun 1835 was discovered during this study further indicates a potential of the lagoons serving as refuges for rare species.
Resumo:
ABSTRACTThis study aimed to analyze the vertical and diameter structure and the spatial distribution pattern of Bauhinia cheilantha in two Caatinga fragments in Sergipe, Brazil, at different regeneration stages. Thirty plots were demarcated in area I (Canindé de São Francisco and Poço Redondo), which has vegetation regeneration, and 25 plots in area II (Porto da Folha) with preserved vegetation, both having 400 m2. All B. cheilanthaindividuals had their height and circumference (circumference at breast height > 6 cm) measured. Possible differences in height and diameter at breast height were tested in the two populations by using Student’s T-test. The distribution pattern of species was calculated through Payandeh’s index. We sampled 154 B. cheilantha individuals, equivalent to 33.3% of the plots in area I and in 1,027 individuals in area II, totaling 100% frequency. Height and the diameter of the two populations were statistically different, where AI achieved all values lower than AII. The spatial distribution pattern of B. cheilantha found in both areas was aggregate, with values of 11.85 and 9.00, respectively. Thus, it became clear that the population in AII is at a more advanced successional status than AI, due to its longer conservation time.
Resumo:
Percarboxylic acids are commonly used as disinfection and bleaching agents in textile, paper, and fine chemical industries. All of these applications are based on the oxidative potential of these compounds. In spite of high interest in these chemicals, they are unstable and explosive chemicals, which increase the risk of synthesis processes and transportation. Therefore, the safety criteria in the production process should be considered. Microreactors represent a technology that efficiently utilizes safety advantages resulting from small scale. Therefore, microreactor technology was used in the synthesis of peracetic acid and performic acid. These percarboxylic acids were produced at different temperatures, residence times and catalyst i.e. sulfuric acid concentrations. Both synthesis reactions seemed to be rather fast because with performic acid equilibrium was reached in 4 min at 313 K and with peracetic acid in 10 min at 343 K. In addition, the experimental results were used to study the kinetics of the formation of performic acid and peracetic acid. The advantages of the microreactors in this study were the efficient temperature control even in very exothermic reaction and good mixing due to the short diffusion distances. Therefore, reaction rates were determined with high accuracy. Three different models were considered in order to estimate the kinetic parameters such as reaction rate constants and activation energies. From these three models, the laminar flow model with radial velocity distribution gave most precise parameters. However, sulfuric acid creates many drawbacks in this synthesis process. Therefore, a ´´greener´´ way to use heterogeneous catalyst in the synthesis of performic acid in microreactor was studied. The cation exchange resin, Dowex 50 Wx8, presented very high activity and a long life time in this reaction. In the presence of this catalyst, the equilibrium was reached in 120 second at 313 K which indicates a rather fast reaction. In addition, the safety advantages of microreactors were investigated in this study. Four different conventional methods were used. Production of peracetic acid was used as a test case, and the safety of one conventional batch process was compared with an on-site continuous microprocess. It was found that the conventional methods for the analysis of process safety might not be reliable and adequate for radically novel technology, such as microreactors. This is understandable because the conventional methods are partly based on experience, which is very limited in connection with totally novel technology. Therefore, one checklist-based method was developed to study the safety of intensified and novel processes at the early stage of process development. The checklist was formulated using the concept of layers of protection for a chemical process. The traditional and three intensified processes of hydrogen peroxide synthesis were selected as test cases. With these real cases, it was shown that several positive and negative effects on safety can be detected in process intensification. The general claim that safety is always improved by process intensification was questioned.
Resumo:
The search for the use of water with high levels of efficiency has motivated the use of drip irrigation in several agricultural systems. However, for the efficiency be ensured, it is necessary that the water distribution in the soil profile must to be known in more details. As it is a highly variable process, function of the local characteristics, is essential the study of each case. The objective of this research was evaluating the water distribution in the soil profile, from drippers installed in surface and 0.15 m below the soil surface. The experiment was realized in the Technical Center of Irrigation (TCI) of the State University of Maringá - PR. The water monitoring in the soil profile was done with TDR probes installed in a box containing sandy soil, at the depths from 0.05 to 0.80 m; and 0.05 to 0.35 m of lateral spacing, at intervals of 0.05 m, totalizing 30 probes. The treatments were differentiated in relation of the installation depth of the emitters (0.0 and 0.15 m) and flow (1, 2, 4, 6, and 8 L h-1). The irrigation time was 8 hours continuous with reading of the TDR probes each 30 minutes. The results allowed concluding that the wet area with the emitter positioned on the soil surface was directly proportional to the flow increase. For the underground dripper, this area was substantially smaller and the water losses by percolation were higher, mainly to the flows higher than 4 L h-1, which provided to unacceptable water losses that should be avoided.
Resumo:
In many industrial applications, such as the printing and coatings industry, wetting of porous materials by liquids includes not only imbibition and permeation into the bulk but also surface spreading and evaporation. By understanding these phenomena, valuable information can be obtained for improved process control, runnability and printability, in which liquid penetration and subsequent drying play important quality and economic roles. Knowledge of the position of the wetting front and the distribution/degree of pore filling within the structure is crucial in describing the transport phenomena involved. Although exemplifying paper as a porous medium in this work, the generalisation to dynamic liquid transfer onto a surface, including permeation and imbibition into porous media, is of importance to many industrial and naturally occurring environmental processes. This thesis explains the phenomena in the field of heatset web offset printing but the content and the analyses are applicable in many other printing methods and also other technologies where water/moisture monitoring is crucial in order to have a stable process and achieve high quality end products. The use of near-infrared technology to study the water and moisture response of porous pigmented structures is presented. The use of sensitive surface chemical and structural analysis, as well as the internal structure investigation of a porous structure, to inspect liquid wetting and distribution, complements the information obtained by spectroscopic techniques. Strong emphasis has been put on the scale of measurement, to filter irrelevant information and to understand the relationship between interactions involved. The near-infrared spectroscopic technique, presented here, samples directly the changes in signal absorbance and its variation in the process at multiple locations in a print production line. The in-line non-contact measurements are facilitated by using several diffuse reflectance probes, giving the absolute water/moisture content from a defined position in the dynamic process in real-time. The nearinfrared measurement data illustrate the changes in moisture content as the paper is passing through the printing nips and dryer, respectively, and the analysis of the mechanisms involved highlight the roles of the contacting surfaces and the relative liquid carrier properties of both non-image and printed image areas. The thesis includes laboratory studies on wetting of porous media in the form of coated paper and compressed pigment tablets by mono-, dual-, and multi-component liquids, and paper water/moisture content analysis in both offline and online conditions, thus also enabling direct sampling of temporal water/moisture profiles from multiple locations. One main focus in this thesis was to establish a measurement system which is able to monitor rapid changes in moisture content of paper. The study suggests that near-infrared diffuse reflectance spectroscopy can be used as a moisture sensitive system and to provide accurate online qualitative indicators, but, also, when accurately calibrated, can provide quantification of water/moisture levels, its distribution and dynamic liquid transfer. Due to the high sensitivity, samples can be measured with excellent reproducibility and good signal to noise ratio. Another focus of this thesis was on the evolution of the moisture content, i.e. changes in moisture content referred to (re)wetting, and liquid distribution during printing of coated paper. The study confirmed different wetting phases together with the factors affecting each phase both for a single droplet and a liquid film applied on a porous substrate. For a single droplet, initial capillary driven imbibition is followed by equilibrium pore filling and liquid retreat by evaporation. In the case of a liquid film applied on paper, the controlling factors defining the transportation were concluded to be the applied liquid volume in relation to surface roughness, capillarity and permeability of the coating giving the liquid uptake capacity. The printing trials confirmed moisture gradients in the printed sheet depending on process parameters such as speed, fountain solution dosage and drying conditions as well as the printed layout itself. Uneven moisture distribution in the printed sheet was identified to be one of the sources for waving appearance and the magnitude of waving was influenced by the drying conditions.
Resumo:
The connexin 32 (Cx32) is a protein that forms the channels that promote the gap junction intercellular communication (GJIC) in the liver, allowing the diffusion of small molecules through cytosol from cell-to-cell. Hepatic fibrosis is characterized by a disruption of normal tissue architeture by cellular lesions, and may alter the GJIC. This work aimed to study the expression and distribution of Cx32 in liver fibrosis induced by the oral administration of dimethylnitrosamine in female Wistar rats. The necropsy of the rats was carried out after five weeks of drug administration. They presented a hepatic fibrosis state. Sections from livers with fibrosis and from control livers were submitted to immunohistochemical, Real Time-PCR and Western-Blot analysis to Cx32. In fibrotic livers the Cxs were diffusely scattered in the cytoplasm, contrasting with the control livers, where the Cx32 formed junction plaques at the cell membrane. Also it was found a decrease in the gene expression of Cx32 without reduction in the protein quantity when compared with controls. These results suggest that there the mechanism of intercellular communication between hepatocytes was reduced by the fibrotic process, which may predispose to the occurrence of a neoplastic process, taken in account that connexins are considered tumor suppressing genes.
Resumo:
Herbicide resistance was reported in Brazil almost ten years ago. One of the main weeds with herbicide resistance is wild poinsettia (Euphorbia heterophylla). This work evaluates the distribution of ALS-resistant E. heterophylla in two states in southern Brazil and determines the major contributing management causes for weed resistance selection in the area. E. heterophylla seeds from 148 sites located in Paraná and Rio Grande do Sul were sampled during 2001 and 2002. Farmers provided specific site data for weed control, tillage system, crop rotation and harvesting operations during previous years. ALS resistant E. heterophylla biotypes were found widely distributed in the survey area. Data analysis suggests seed dissemination is unlikely to explain the widespread distribution of resistance. The most probable factor for the selection of the resistant E. heterophylla is the persistent high use of ALS-inhibiting herbicides over time. Indirect evidence is presented demonstrating the need to educate legislators and farmers about the importance of herbicide mixtures as a strategy to prevent herbicide resistance.
Resumo:
An experiment was laid down in a screen house to determine the distribution of weed seeds at different soil depths and periods of cultivation of sugarcane in Ilorin, Nigeria. Soil samples from different depth levels (0-10 cm, 11-20 cm and 21-30 cm) were collected after harvesting of canes from three different land use fields (continuous sugarcane cultivation for > 20 years, continuous sugarcane cultivation for < 10 years after long fallow period and continuous sugarcane cultivation for < 5 years after long fallow period) in November, 2012. One kilogram of the sieved composite soil samples was arranged in the screen house and watered at alternate days. Germinating weed seedlings were identified, counted and then pulled out for the period of 8 months. Land use and soil depth had a highly significant (p £ 0.05) effect on the total number of weeds that emerged from the soil samples. The 010 cm of the soil depth had the highest weed seedlings that emerged. There was an equal weed seed distribution at the 11-20 cm and 21-30 cm depths of the soil. Sugarcane fields which have been continuously cultivated for a long period of time with highly disturbing soil tillage practices tend to have larger seed banks in deeper soil layers (11-20 cm and 21-30 cm) while recently opened fields had significantly larger seed banks at the 0-10 cm soil sampling depth.
Resumo:
ABSTRACTEfficiency of weed control can be increased if the herbicide formulation provides higher target coverage and evaporation time that enable an adequate distribution of herbicide on the target plant, allowing the absorption to continue even after the droplets evaporation. The aim of this research was to assess the influence of glyphosate formulations on the wetted area and evaporation time of droplets on different targets. Tests were conducted with droplets sizing from 500 μm containing three formulations of glyphosate (isopropylamine salt, ammonium salt and potassium salt) deposited on three surfaces, two leaves (Bidens pilosa and Cenchrus echinatus) and glass slides. Sequential images analyses were used to quantify the evaporation time and the wetted area. An experimental system was utilized that was composed of a droplet generator, a stereo microscope with a camera to capture images, as well as an environmental chamber controlled for temperature and relative humidity. The kind of glyphosate formulations and target surfaces are crucial in the wetted area and evaporation time. The isopropylamine salt decreased the wetted area and evaporation time when compared with ammonium salt and potassium salt for all the surfaces deposited on. Bidens pilosa allows an increased wetted area for all the glyphosate formulations when compared to Cenchrus echinatus and glass slides.
Resumo:
Halimeda is a genus of calcified coenocytic green algae with a well known ecological importance in some tropical areas. Bleached calcified segments of Halimeda may accumulate in large deposits of economic potential as is the case in the northeastern coast of Brazil. In a survey of the genus in Brazil based on recent collections and examination of abundant material deposited on Brazilian herbaria we identified seven species: Halimeda cuneata Hering, H. discoidea Decaisne, H. gracilis Harvey ex J. Agardh, H. incrassata (Ellis) Lamouroux, H. opuntia (Linnaeus) Lamouroux, H. simulans Howe and H. tuna (Ellis & Solander) Lamouroux. These species are described in detail, with emphasis on diagnostic characters. Our study has shown that the shape and size of the utricula in surface view, under scanning electron microscopy, can be utilized to discriminate some species. Fertile specimens of Halimeda cuneata and H. discoidea are reported for the first time in the region. Data on vertical and geographical distribution are presented for each species and the southern limit of the genus in the western Atlantic was extended.
Resumo:
In the doctoral dissertation, low-voltage direct current (LVDC) distribution system stability, supply security and power quality are evaluated by computational modelling and measurements on an LVDC research platform. Computational models for the LVDC network analysis are developed. Time-domain simulation models are implemented in the time-domain simulation environment PSCAD/EMTDC. The PSCAD/EMTDC models of the LVDC network are applied to the transient behaviour and power quality studies. The LVDC network power loss model is developed in a MATLAB environment and is capable of fast estimation of the network and component power losses. The model integrates analytical equations that describe the power loss mechanism of the network components with power flow calculations. For an LVDC network research platform, a monitoring and control software solution is developed. The solution is used to deliver measurement data for verification of the developed models and analysis of the modelling results. In the work, the power loss mechanism of the LVDC network components and its main dependencies are described. Energy loss distribution of the LVDC network components is presented. Power quality measurements and current spectra are provided and harmonic pollution on the DC network is analysed. The transient behaviour of the network is verified through time-domain simulations. DC capacitor guidelines for an LVDC power distribution network are introduced. The power loss analysis results show that one of the main optimisation targets for an LVDC power distribution network should be reduction of the no-load losses and efficiency improvement of converters at partial loads. Low-frequency spectra of the network voltages and currents are shown, and harmonic propagation is analysed. Power quality in the LVDC network point of common coupling (PCC) is discussed. Power quality standard requirements are shown to be met by the LVDC network. The network behaviour during transients is analysed by time-domain simulations. The network is shown to be transient stable during large-scale disturbances. Measurement results on the LVDC research platform proving this are presented in the work.
Resumo:
The aim of this master’s thesis was to make a qualitative marketing research and on the basis of this to develop a distribution plan for the case company Finnish 3M Ltd.’s wound care products. The literature review includes three important parts: distribution channel planning, the buying behavior of seniors, and special characteristics of health care products’ marketing. The empirical part of this thesis comprises two different parts. The first part is a marketing research, in which the buying behavior of wound care products is studied in Espoo. The research aim was to examine, in which distribution channels the wound care patients under home care would most preferably buy wound care products during the time period, when municipalities will not yet provide the products for free. The data was collected through semi-structured phone interviews and regular interviews, and was treated qualitatively and anonymously. The study revealed that the recommendations of nurses and doctors influenced most the buying behavior of wound care customers. In the second part of the thesis a distribution channel plan for wound care products was made for the case company 3M Finland Ltd. based on the results. 3M Finland Ltd. should focus on pharmacies, online-stores and municipal health centers as their main distributors.
Abnormal subcellular distribution of GLUT4 protein in obese and insulin-treated diabetic female dogs
Resumo:
The GLUT4 transporter plays a key role in insulin-induced glucose uptake, which is impaired in insulin resistance. The objective of the present study was to investigate the tissue content and the subcellular distribution of GLUT4 protein in 4- to 12-year-old control, obese and insulin-treated diabetic mongrel female dogs (4 animals per group). The parametrial white adipose tissue was sampled and processed to obtain both plasma membrane and microsome subcellular fractions for GLUT4 analysis by Western blotting. There was no significant difference in glycemia and insulinemia between control and obese animals. Diabetic dogs showed hyperglycemia (369.9 ± 89.9 mg/dl). Compared to control, the plasma membrane GLUT4, reported per g tissue, was reduced by 55% (P < 0.01) in obese dogs, and increased by 30% (P < 0.05) in diabetic dogs, and the microsomal GLUT4 was increased by ~45% (P < 0.001) in both obese and diabetic animals. Considering the sum of GLUT4 measured in plasma membrane and microsome as total cellular GLUT4, percent GLUT4 present in plasma membrane was reduced by ~65% (P < 0.001) in obese compared to control and diabetic animals. Since insulin stimulates GLUT4 translocation to the plasma membrane, percent GLUT4 in plasma membrane was divided by the insulinemia at the time of tissue removal and was found to be reduced by 75% (P < 0.01) in obese compared to control dogs. We conclude that the insulin-stimulated translocation of GLUT4 to the cell surface is reduced in obese female dogs. This probably contributes to insulin resistance, which plays an important role in glucose homeostasis in dogs.
Resumo:
The objective of the present study was to determine the adequate cortical regions based on the signal-to-noise ratio (SNR) for somatosensory evoked potential (SEP) recording. This investigation was carried out using magnitude-squared coherence (MSC), a frequency domain objective response detection technique. Electroencephalographic signals were collected (International 10-20 System) from 38 volunteers, without history of neurological pathology, during somatosensory stimulation. Stimuli were applied to the right posterior tibial nerve at the rate of 5 Hz and intensity slightly above the motor threshold. Response detection was based on rejecting the null hypothesis of response absence (significance level α= 0.05 and M = 500 epochs). The best detection rates (maximum percentage of volunteers for whom the response was detected for the frequencies between 4.8 and 72 Hz) were obtained for the parietal and central leads mid-sagittal and ipsilateral to the stimulated leg: C4 (87%), P4 (82%), Cz (89%), and Pz (89%). The P37-N45 time-components of the SEP can also be observed in these leads. The other leads, including the central and parietal contralateral and the frontal and fronto-polar leads, presented low detection capacity. If only contralateral leads were considered, the centro-parietal region (C3 and P3) was among the best regions for response detection, presenting a correspondent well-defined N37; however, this was not observed in some volunteers. The results of the present study showed that the central and parietal regions, especially sagittal and ipsilateral to the stimuli, presented the best SNR in the gamma range. Furthermore, these findings suggest that the MSC can be a useful tool for monitoring purposes.