1000 resultados para Preparation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligosaccharides were prepared through mild hydrochloric acid hydrolysis of kappa-carrageenan from Kappaphycus striatum to compare the antitumor activity with carrageenan polysaccharides. Oligosaccharide fractions were isolated by gel permeation chromatography and the structure of fraction 1 (F1) was studied by using negative- ion electrospray ionization-mass spectrometry (ESI-MS), and H-1 and C-13-NMR spectrometry. The in vitro antitumor effects in three human neoplastic cell lines (KB, BGC, and Hela) of polysaccharides and F1 were investigated. The bioassay results showed that F1 exhibited relatively higher antitumor activity against the three cancer cells than polysaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O (2) (-) )/hydroxyl (center dot OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O (2) (-) scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the center dot OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porphyran extracted from Porphyra haitanensis is a sulfated polysaccharide, which possesses excellent antioxidant activities. In this study, we prepared one low-molecular-weight porphyran and its sulfated, acetylated, phosphorylated and benzoylated derivatives. Their antioxidant activities were investigated including scavenging effect of superoxide, hydroxyl and 1,1-diphenyl-2-picrylhydrazyl radicals. The results of chemical analysis and FT-IR spectrums showed the modification was successful. And in addition, we found that certain derivative exhibited stronger antioxidant activity than low-molecular-weight porphyran. The benzoylated derivative showed the most excellent antioxidant activity in three assays, so this derivative needs to be attended to. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, 20 kinds of different 2-(alpha-arylamino phosphonate)-chitosan (2-alpha-AAPCS) were prepared by different Schiff bases of chitosan (CS) reacted with di-alkyl phosphite in benzene solution. The structures of the derivatives (2-alpha-AAPCS) were characterized by FT-IR spectroscopy and elemental analysis. In addition, the antifungal activities of the derivatives against four kinds of fungi were evaluated in the experiment. The results indicated that all the prepared 2-alpha-AAPCS had a significant inhibiting effect on the investigated fungi when the derivatives concentration ranged from 50 to 500 mu g mL(-1). Furthermore, the antifungal activities of the derivatives increased with increasing the molecular weight and concentration. And the antifungal activities of the derivatives were affected by their dimensional effect and charge density. Besides, the rule and mechanism of the antifungal activities of them were discussed in this paper. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of molecular weight and substitution degree of sulfated polysaccharides on their biological activity is considered in majority of works involving the anticoagulant or antiviral properties of these substances. Therefore, the present paper describes the effect of preparation conditions of sulfated chitosans on their molecular weight and sulfur content, such as different reaction time, acid solvent and temperature. Foregoing literature expounded the action of dichloroacetic acid (DCAA) as acid solvent in homogeneous reaction. However, DCAA is expensive and noxious, therefore, in the present paper cheap and non-noxious formic acid (88%) was in place of DCAA. Furthermore, during reaction formic acid was not dehydrated. Under formic acid we obtained the satisfying results that was higher yield and equivalent sulfur contents compared to DCAA. IR and C-13 NMR spectrums proved the structure of the resultant obtained under formic acid or DCAA to be same. Now, it has not been reported for formic acid as acid solvent in homogeneous reaction of chitosan sulfatation. In this present paper, we also determined antioxidant activity of high-molecular weight and high-sulfate-content chitosans (HCTS). The results showed that HCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.012 and 3.269 mg/mL, respectively. It had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of HCTS. It is a potential antioxidant in vitro. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper microwave radiation has been used to introduce N-sulfo and O-sulfo groups into chitosan with a thigh degree of substitution and low-molecular weight. The sulfation of chitosan was performed in microwave ovens. It was found that microwave heating is a convenient way to obtain a wide range of products of different degrees of substitution and molecular weight only by changing reaction time or/and radiation power. Moreover, microwave radiation accelerated the degradation of sulfated chitosan, and the molecular weight of sulfated chitosan was considerably lower than that obtained by traditional heating. There are no differences in the chemical structure of sulfated chitosan obtained by microwave and by conventional technology. FTIR and C-13 NMR spectral analyses demonstrated that a significantly shorter time is required to obtain a satisfactory degree of substitution and molecular weight by microwave radiation than by conventional technology. In this present paper, we also determined antioxidant activity of low-molecular-weight and high-sulfate-content chitosans (LCTS). The results showed LCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.025 and 1.32mg/mL, respectively. It is a potential antioxidant in vitro. (C) 2004 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new kinds of 1,3,5-thiadiazine-2-thi one derivatives of chitosan with two different molecular weight (SATTCS1, SATTCS2, TITTCS1, TITTCS2, CITTCS1 and CITTCS2) have been prepared. Their structures were characterized by IR spectroscopy. The substitution degree of derivatives calculated by elemental analyses was 0.47, 0.42, 0.41, 0.38, 0.41 and 0.36, respectively. The result shows that substitution degree of derivatives was higher with lower molecular weight. The antioxidant activity was studied using an established system, such as bydroxyl radical scavenging, superoxide radical scavenging and reducing power. Antioxidant activity of the 1,3,5-thiadiazine-2-thione derivatives of chitosan were stronger than that of chitosans and antioxiclant activity of low molecular weight derivatives were stronger than that of high molecular weight derivatives. It is a potential antioxidant in vitro. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan (CS) and chitosan sulfates (CSS) with different molecular weight (Mw) were reacted with 4-acetamidobenzene sulfonyl chloride to obtain sulfanilamide derivatives of chitosan and chitosan sulfates (LSACS, HSACS, LSACSS, HSACSS). The preparation conditions such as different reaction time, temperature, solvent, and the molar ratio of reaction materials are discussed in this paper. Their structures were characterized by FTIR spectroscopy and elemental analyses. The antioxidant activities of the derivatives were investigated employing various established in vitro systems, such as hydroxyl-radical (OH) superoxide anion (O-2(center dot-)) scavenging and reducing power. All kinds of the compounds (HCS, LCS, HCSS, LCSS, HSACS, LSACS, HSACSS, LSACSS) showed stronger scavenging activity on hydroxyl radical than ascorbic acid (Vc). The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were obvious. The experiment showed that the superoxide radical scavenging effect of sulfanilamide derivatives of chitosan and chitosan sulfates was stronger than that of original CS and CSS. All of the derivatives were efficient in the reducing power. The results indicated that the sulfanilamide group were grafted on CS and CSS increased the reducing power of them obviously. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan (CS) with two different molecular weight were modified by reacting with methyl hydrazine-dithiocarboxylate and methyl phenylhydrazine-dithiocarboxylate to give 2-(hydrazine-thiosemicarbazone)-chitosan (2-HTCHCS, 2-HTCLCS) and 2-(phenylhydrazine-thiosemicarbazone)chitosan (2-PHTCHCS, 2-PHTCLCS). The structure of the derivatives was characterized by FT-IR spectroscopy and elemental analysis. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical (*OH)/superoxide anion (O-2(center dot-)) scavenging/reducing power and chelating activity. All of the derivatives showed strong scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 2-HTCHCS, 2-HTCLCS, 2-PHTCHCS and 2-PHTCLCS was 0.362, 0.263, 0.531 and 0.336 mg/mL respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-[phenylhydrazine (or hydrazine)-thiosemicarbazone]-chitosan were higher than that of chitosan. The derivatives had obviously reducing power and chelating activity. The data obtained from vitro models clearly establish the antioxidant potency of 2-[phenylhydrazine (or hydrazine)-thiosemicarbazone]-chitosan. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic copper nanostructures of different morphologies were synthesized by a surfactant-free electrochemical method. Single crystal nature of the nanostructures was revealed from their X-ray diffraction and electron diffraction patterns. Mechanism of dendrite formation was discussed from thermodynamic aspects using the concept of supersaturation. Supersaturation of the copper metal reduced on the surface of the electrode was the crucial factor for the generation of different morphologies. Effects of applied potential, temperature, and the solution concentration on the supersaturation were studied. The NO3- and H2O2 electroreduction ability of the dendritic materials was tested. Use of copper dendrite-modified electrode as NO3- sensor was demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZSM-5 zeolites were synthesized in situ onto cordierite honeycombs by vapor phase transport (VPT) for the first time. The as-synthesized ZSM-5/cordierite honeycombs were impregnated with IrCl3 and tested for NOx reduction with a simulated exhaust gas as the reducing agent. Under the conditions of excess oxygen, the Ir/ZSM-S/cordierite monolith catalyst exhibited NO reduction of 73% at a temperature of 573 K and a space velocity of 20,000 h(-1).