952 resultados para Postmortem Human Brain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary auditory cortex (PAC) is central to human auditory abilities, yet its location in the brain remains unclear. We measured the two largest tonotopic subfields of PAC (hA1 and hR) using high-resolution functional MRI at 7 T relative to the underlying anatomy of Heschl's gyrus (HG) in 10 individual human subjects. The data reveals a clear anatomical-functional relationship that, for the first time, indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplications, and complete duplications). In 20/20 individual hemispheres, two primary mirror-symmetric tonotopic maps were clearly observed with gradients perpendicular to HG. PAC spanned both divisions of HG in cases of partial and complete duplications (11/20 hemispheres), not only the anterior division as commonly assumed. Specifically, the central union of the two primary maps (the hA1-R border) was consistently centered on the full Heschl's structure: on the gyral crown of single HGs and within the sulcal divide of duplicated HGs. The anatomical-functional variants of PAC appear to be part of a continuum, rather than distinct subtypes. These findings significantly revise HG as a marker for human PAC and suggest that tonotopic maps may have shaped HG during human evolution. Tonotopic mappings were based on only 16 min of fMRI data acquisition, so these methods can be used as an initial mapping step in future experiments designed to probe the function of specific auditory fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world's oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare "supernormal" centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral complications are important, but poorly understood pathological features of infections caused by some species of Plasmodium and Babesia. Patients dying from P. falciparum were classified as cerebral or non-cerebral cases according to the cerebral malaria coma scale. Light microscopy revealed that cerebral microvessels of cerebral malaria patients were field with a mixture of parazited and unparazited erythrocytes, with 94% of the vessels showing parasitized red blood cell (PRBC) sequestration. Some degree of PRBC sequestration was also found in non-cerebral malaria patients, but the percentage of microvessls with sequestered PRBC was only 13% Electron microscopy demonstrated knobs on the membrane of PRBC that formed focal junctions with the capillary endothelium. A number of host cell molecules such as CD36, thrombospondim (TSP) and intracellular adhesion molecule I (ICAM-1) may function as endothelial cell surfacereports for P. falciparum-infected erythrocytes. Affinity labeling of CD36 and TSP to the PRBC surface showed these molecules specifically bind to the knobs. Babesia bovis infected erythrocytes procedure projections of the erythrocyte membrane that are similar to knobs. When brain tissue from B. bovis-infected cattle was examined, cerebral capillaries were packed with PRBC. Infected erythrocytes formed focal attachments with cerebral endothelial cells at the site of these knob-like projections. These findings indicate that cerebral pathology caused by B. bovis is similar to human cerebral malaria. A search for cytoadherence proteins in the endothelial cells may lead to a better understanding of the pathogenisis of cerebral babesiosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although several animal models for human cerebral malaria have been proposed in the past, name have shown pathological findings that are similar to those seen in humans. In order to develop an animal model for human cerebral malaria, we studied the pathology of brains of Plasmodium coatneyi (primate malaria parasite)-infected rhesus monkeys. Our study demonstrated parazitized erythrocyte (PRBC) sequestration and cytoadherence of knobs on PRBC to endothelial cells in cerebral microvessels of these monkeys. This similar to the findings een in human cerebral malaria. Crebral microvessels with sequestred PRBC were shown by immunohistochemistry to possess CD36, TSP and ICAM-1. These proteins were not evident in cerebral microvessels of uninfected control monkeys. Our study indicates, for the first time, that rhesus monkeys infected with P. coatneyi can be used as a primate model to study human cerebral malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Necrophagous insects, mainly Diptera and Coleoptera, are attracted to specific stages of carcass decomposition, in a process of faunistic succession. They are very important in estimating the postmortem interval, the time interval between the death and the discovery of the body. In studies done with pig carcasses exposed to natural conditions in an urban forest (Santa Genebra Reservation), located in Campinas, State of São Paulo, southeastern Brazil, 4 out of 36 families of insects collected - Calliphoridae, Sarcophagidae, Muscidae (Diptera) and Dermestidae (Coleoptera) - were considered of forensic importance, because several species were collected in large numbers both visiting and breeding in pig carcasses. Several species were also observed and collected on human corpses at the Institute of Legal Medicine. The species belonged to 17 different families, 6 being of forensic importance because they were reared from human corpses or pig carcasses: Calliphoridae, Sarcophagidae, Muscidae, Piophilidae (Diptera), Dermestidae, Silphidae and Cleridae (Coleoptera). The most important species were: Diptera - Chrysomya albiceps, Chrysomya putoria, Hemilucilia segmentaria, Hemilucilia semidiaphana (Calliphoridae), Pattonella intermutans (Sarcophagidae), Ophyra chalcogaster (Muscidae), Piophila casei (Piophilidae); Coleoptera - Dermestes maculatus (Dermestidae), Oxyletrum disciolle (Silphidae) and Necrobia rufipes (Cleridae).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence has emerged that the initiation and growth of gliomas is sustained by a subpopulation of cancer-initiating cells (CICs). Because of the difficulty of using markers to tag CICs in gliomas, we have previously exploited more robust phenotypic characteristics, including a specific morphology and intrincic autofluorescence, to identify and isolate a subpopulation of glioma CICs, called FL1(+). The objective of this study was to further validate our method in a large cohort of human glioma and a mouse model of glioma. Seventy-four human gliomas of all grades and the GFAP-V(12)HA-ras B8 mouse model were analyzed for in vitro self-renewal capacity and their content of FL1(+). Nonneoplastic brain tissue and embryonic mouse brain were used as control. Genetic traceability along passages was assessed with microsatellite analysis. We found that FL1(+) cells from low-grade gliomas and from control nonneoplasic brain tissue show a lower level of autofluorescence and undergo a restricted number of cell divisions before dying in culture. In contrast, we found that FL1(+) cells derived from many but not all high-grade gliomas acquire high levels of autofluorescence and can be propagated in long-term cultures. Moreover, FL1(+) cells show a remarkable traceability over time in vitro and in vivo. Our results show that FL1(+) cells can be found in all specimens of a large cohort of human gliomas of different grades and in a model of genetically induced mouse glioma as well as nonneoplastic brain. However, their self-renewal capacity is variable and seems to be dependent on the tumor grade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of the ACuteTox project aimed at the development of non-animal testing strategies for predicting human acute oral toxicity, aggregating brain cell cultures (AGGR) were examined for their capability to detect organ-specific toxicity. Previous multicenter evaluations of in vitro cytotoxicity showed that some 20% of the tested chemicals exhibited significantly lower in vitro toxicity as expected from in vivo toxicity data. This was supposed to be due to toxicity at supracellular (organ or system) levels. To examine the capability of AGGR to alert for potential organ-specific toxicants, concentration-response studies were carried out in AGGR for 86 chemicals, taking as endpoints the mRNA expression levels of four selected genes. The lowest observed effect concentration (LOEC) determined for each chemical was compared with the IC20 reported for the 3T3/NRU cytotoxicity assay. A LOEC lower than IC20 by at least a factor of 5 was taken to alert for organ-specific toxicity. The results showed that the frequency of alerts increased with the level of toxicity observed in AGGR. Among the chemicals identified as alert were many compounds known for their organ-specific toxicity. These findings suggest that AGGR are suitable for the detection of organ-specific toxicity and that they could, in conjunction with the 3T3/NRU cytotoxicity assay, improve the predictive capacity of in vitro toxicity testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.