976 resultados para Porous Medium
Resumo:
This study presents the performance analysis and testing of a 250 kW medium-speed brushless doubly-fed induction generator (DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and showthe system's steady-state and dynamic performance and grid low-voltage ride- through capability. The medium-speed brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drivetrain for wind turbine applications. © The Institution of Engineering and Technology 2013.
Resumo:
This paper studies the Front End of Eco-Innovation (FEEI), the initial phase of the eco-innovation process. Incorporating environmental concerns at the front-end of innovation is important, as product parameters are still flexible. This paper investigates the FEEI for 42 small and medium sized eco-innovators in the Netherlands by using a survey. The results show that SMEs embrace informal, systematic, and open innovation approaches at the FEEI. Teams appear to be multidisciplinary, and creativity and environmental knowledge are essential. Experimentation played a significant role at the FEEI. The paper concludes with recommendations for future research and implications for managers. © 2013 Elsevier B.V.
Resumo:
Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension of nanodiamond in methanol causing them to clump together into "teepee" or "honeycomb" structures. These nanostructured CNT/BDD composite electrodes have been extensively characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Not only do these electrodes possess the excellent, well-known characteristics associated with BDD (large potential window, chemical inertness, low background levels), but also they have electroactive areas and double-layer capacitance values ∼450 times greater than those for the equivalent flat BDD electrodes.
Resumo:
The paper presents the design and performance analysis of a 6 MW medium-speed Brushless Doubly-Fed Induction Generation (Brushless DFIG) for a wind turbine drivetrain. Two machines with different frame sizes have been designed to show the flexibility of the design procedure. The mediumspeed Brushless DFIG in combination with a two stage gearbox offers a low-cost, low-maintenance and reliable drivetrain for wind turbine applications.
Resumo:
The use of reactive magnesia (MgO) as the binder in porous blocks demonstrated significant advantages due to its low production temperatures and ability to carbonate, leading to significant strengths. This paper investigates the enhancement of the carbonation process through different curing conditions: water to cement ratio (0.6-0.9), CO2 concentration (5-20%), curing duration (1-7 days), relative humidity (55-98%), and wet/dry cycling frequency (every 0-3 days), improving the carbonation potential through increased amounts of CO2 absorbed and enhanced mechanical performance. UCS results were supported with SEM, XRD, and HCl acid digestion analyses. The results show that CO2 concentrations as low as 5% can produce the required strengths after only 1 day. Drier mixes perform better in shorter curing durations, whereas larger w/c ratios are needed for continuous carbonation. Mixes subjected to 78% RH outperformed all the others, also highlighting the benefits of incorporating wet/dry cycling to induce carbonation. © 2014 Elsevier Ltd.
Resumo:
The ion-exchange equilibrium of bovine serum albumin (BSA) to an anion exchanger, DEAE Spherodex M, has been studied by batch adsorption experiments at pH values ranging from 5.26 to 7.6 and ionic strengths from 10 to 117.1 mmol/l. Using the unadjustable adsorption equilibrium parameters obtained from batch experiments, the applicability of the steric mass-action (SMA) model was analyzed for describing protein ion-exchange equilibrium in different buffer systems. The parametric sensitivity analysis was performed by perturbing each of the model parameters, while holding the rest constant. The simulation results showed that, at high salt concentrations or low pHs close to the isoelectric point of the protein, the precision of the model prediction decreased. Parametric sensitivity analysis showed that the characteristic charge and protein steric factor had the largest effects on ion-exchange equilibrium, while the effect of equilibrium constant was about 70%-95% smaller than those of characteristic charge and steric factor under all conditions investigated. The SMA model with the relationship between the adjusted characteristic charge and the salt concentration can well predict the protein adsorption isotherms in a wide pH range from 5.84 to 7.6. It is considered that the SMA model could be further improved by taking into account the effect of salt concentration on the intermolecular interactions of proteins. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The feasibility of an inexpensive wastewater treatment system is evaluated in this study. An integrated biological pond system was operated for more than 3 years to purify the wastewater from a medium-sized city, Central China. The experiment was conducted in 3 phases with different treatment combinations for testing their purification efficiencies. The pond system was divided into 3 functional regions: influent purification, effluent upgrading and multi-utilization. These regions were further divided into several zones and subzones. Various kinds of aquatic organisms, including macrophytes, algae, microorganisms and zooplankton, were effectively cooperating in the wastewater treatment in this system. The system attained high reductions of BOD5, COD, TSS, TN, TP and other pollutants. The purification efficiencies of this system were higher than those of most traditional oxidation ponds or ordinary macrophyte ponds. The mutagenic effect and numbers of bacteria and viruses declined significantly during the process of purification. After the wastewater flowed through the upgrading zone, the concentrations of pollutants and algae evidently decreased. Plant harvesting did not yield dramatic effects on reductions of the main pollutants, though it did significantly affect the biomass productivity of the macrophytes. The effluent from this system could be utilized in irrigation and aquaculture. Some aquatic products were harvested from this system and some biomass was utilized for food, fertilizer, fodder and some other uses. The wastewater was reclaimed for various purposes.
Resumo:
A free-standing, bidirectionally permeable and ultra-thin (500-1000 nm) porous anodic alumina membrane was fabricated using a two-step aluminium anodization process, which was then placed on top of a silicon film as an etching mask. The pattern was transferred to silicon using dry-etching technology, and the silicon nanopore array structure was formed. The factors which afflct the pattern transfer process are discussed. Observation of the nanopatterned sample under a scanning electron microscope shows that the structure obtained by this method is made up of uniform and highly ordered holes, which attains to 125 nm depth. The photoluminescence spectrum from the nanopatterned sample,the surface of which has been thermal-oxidized, shows that the the luminesce is evidently enhanced, the mechanism of which is based on the normally weak TO phonon assisted bandgap light-emission process, and the physical reasons that underlic the enhancement have been analyzed. The PL results do show an attractive optical characteristic, which provides a promising pathway to achieve efficient light emission from silicon.
Resumo:
A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fascinating features of porous InP array-directed assembly of InAs nanostructures are presented. Strained InAs nanostructures are grown by molecular-beam epitaxy on electrochemical etched porous InP substrate. Identical porous substrate with different pore depths defines different growth modes. Shallow pores direct the formation of closely spaced InAs dots at the bottom. Deep pores lead to progressive covering of the internal surface of pores by epitaxial material followed by pore mouth shrinking. For any depth an obvious dot depletion feature occurs on top of the pore framework. This growth method presages a pathway to engineer quantum-dot molecules and other nanoelements for fancy physical phenomena. (c) 2006 American Institute of Physics.
Resumo:
Eu3+-doped zinc aluminate (ZnAl2O4) nanorods with a spinel structure were successfully synthesized via an annealing transformation of layered precursors obtained by a homogeneous coprecipitation method combined with surfactant assembly. These spinel nanorods, which consist of much finer nanofibres together with large quantities of irregular mesopores and which possess a large surface area of 93.2 m(2) g(-1) and a relatively narrow pore size distribution in the range of 6 - 20 nm, are an ideal optical host for Eu3+ luminescent centres. In this nanostructure, rather disordered surroundings induce the typical electric-dipole emission (D-5(0) --> F-7(2)) of Eu3+ to predominate and broaden.