893 resultados para Pliny, the Younger.
Resumo:
Oxygen and carbon isotope records from benthic and planktonic foraminifera are presented for the past 35,000 years in the northeastern Atlantic. The results support the idea that the last deglaci-ation took place in two major steps (Duplessy et al., 1981 doi:10.1016/0031-0182(81)90096-1; Mix and Ruddiman, 1985 doi:10.1016/0277-3791(85)90015-0; Ruddiman, 1987; Fairbanks, 1989 doi:10.1038/342637a0), and conflict with theories calling for a strong reduction in North Atlantic deep-water formation to explain the abrupt cooling of the Younger Dryas cold period (Broecker et al., 1985 doi:10.1038/315021a0; Rind et al., 1986 doi:10.1007/BF01277044; Broecker et al., 1988 doi:10.1029/PA003i001p00001).
Resumo:
Reduced nitrate supply to the subarctic North Pacific (SNP) surface during the last ice age has been inferred from coupled changes in diatom-bound d15N (DB-d15N), bulk sedimentary d15N, and biogenic fluxes. However, the reliability of bulk sedimentary and DB-d15N has been questioned, and a previously reported d15N minimum during Heinrich Stadial 1 (HS1) has proven difficult to explain. In a core from the western SNP, we report the foraminifera-bound d15N (FB-d15N) in Neogloboquadrina pachyderma and Globigerina bulloides, comparing them with DB-d15N in the same core over the past 25 kyr. The d15N of all recorders is higher during the Last Glacial Maximum (LGM) than in the Holocene, indicating more complete nitrate consumption. N. pachyderma FB-d15N is similar to DB-d15N in the Holocene but 2.2 per mil higher during the LGM. This difference suggests a greater sensitivity of FB-d15N to changes in summertime nitrate drawdown and d15N rise, consistent with a lag of the foraminifera relative to diatoms in reaching their summertime production peak in this highly seasonal environment. Unlike DB-d15N, FB-d15N does not decrease from the LGM into HS1, which supports a previous suggestion that the HS1 DB-d15N minimum is due to contamination by sponge spicules. FB-d15N drops in the latter half of the Bølling/Allerød warm period and rises briefly in the Younger Dryas cold period, followed by a decline into the mid-Holocene. The FB-d15N records suggest that the coupling among cold climate, reduced nitrate supply, and more complete nitrate consumption that characterized the LGM also applied to the deglacial cold events.
Resumo:
Paleoenvironmental studies and climate models demonstrate that fluvial runoff and moisture availability in the Caribbean hinterland react very sensitively to climatic variations. Late Pleistocene and Holocene climate records document pronounced dry and wet periods over tropical South America mainly caused by shifts of the Intertropical Convergence Zone (ITCZ). However, forcing mechanisms for changes in the ITCZ position remain controversial. Here we present high-resolution foraminiferal Ba/Ca and d18Oseawater records from a core located within the Orinoco River outflow documenting abrupt hydrological changes in the Orinoco catchment area during the deglacial and Holocene. Our data, obtained from the surface-dwelling foraminifera Globigerinoides ruber (pink), show an abrupt increase in Ba/Ca ratios in the early Holocene, starting ~600 yr after the end of the Younger Dryas (YD) cold interval at ca. 10.8 ka and suggesting a massive reorganization of moisture sources in northern South America. In contrast, the salinity dependent d18Oseawater from the same samples shows a gradual decrease starting at the end of the YD. The offset of our Ba/Ca peak excludes meltwater release in conjunction with the northern Andean glacier retreat well before the end of the YD as a forcing mechanism. We suggest that the Ba/Ca record documents an abrupt increase in Ba-rich waters of a northern Andean source caused by the insolation-driven shift of the ITCZ and/or enhanced monsoon activity.
Resumo:
AMS radiocarbon ages have been determined on terrestrial macrofossils selected from the annually laminated sediments of lake Holzmaar (Germany). The radiocarbon chronology of this lake covers the last 12.6 ka. Comparison of the radiocarbon dated varve chronology with tree ring data shows that an additional 878 years have to be added to the varve chronology. The corrected 14C varve chronology of Holzmaar reaches back to ca. 13.8 ka cal. BP and compares favourably with the results from Soppensee (Switzerland) (Hajdas et al., 1993, doi:10.1007/BF00209748). The corrected ages for the onset and the end of the Younger Dryas biozone are 11,940 cal. BP and 11,490 cal. BP, respectively. The ash layer of the Laacher See volcanic eruption is dated at 12,201 ± 224 cal. BP and the Ulmener Tephra layer is dated at 10,904 cal. BP.
Resumo:
During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SSTs) of the western South Atlantic, and in mean air temperatures (MATs) over southeastern South America. It has been suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is so far largely unknown. Here we address this issue, presenting high-temporal-resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling-Allerød, in phase with an existing SST record from the NBC. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental in driving the Earth out of the last glacial.
Resumo:
Past changes in the freshwater balance of the surface North Atlantic Ocean are thought to have influenced the rate of deep-water formation, and consequently climate (Broecker and Denton, 1989, doi:10.1016/0016-7037(89)90123-3; Manabe and Stouffer, 1996; doi:10.1038/378165a0). Although water-mass proxies are generally consistent with an impact of freshwater input on meridional overturning circulation (Boyle and Keigwin, 1987, doi:10.1038/330035a0), there has been little dynamic evidence to support this linkage. Here we present a 25,000 year record of variations in sediment grain size from south of Iceland, which indicates vigorous bottom-water currents during both the last glacial maximum and the Holocene period. Together with reconstructions of North Atlantic water-mass distribution, vigorous bottom currents suggest a shorter residence time of northern-source waters during the last glacial maximum, relative to the Holocene period. The most significant reductions in flow strength occur during periods that have been associated with freshening of the surface North Atlantic. The short-term deglacial oscillations in bottom current strength are closely coupled to changes in Greenland air temperature, with a minimum during the Younger Dryas cold reversal and a maximum at the time of rapid warming at the onset of the Holocene. Our results support a strong connection between ocean circulation and rapid climate change.
Resumo:
Here we present a high-resolution marine sediment record from the El Niño region off the coast of Peru spanning the last 20,000 years. Sea surface temperature, photosynthetic pigments, and a lithic proxy for El Niño flood events on the continent are used as paleo-El Niño-Southern Oscillation proxy data. The onset of stronger El Niño activity in Peru started around 17,000 calibrated years before the present, which is later than modeling experiments show but contemporaneous with the Heinrich event 1. Maximum El Niño activity occurred during the early and late Holocene, especially during the second and third millennium B.P. The recurrence period of very strong El Niño events is 60-80 years. El Niño events were weak before and during the beginning of the Younger Dryas, during the middle of the Holocene, and during medieval times. The strength of El Niño flood events during the last millennium has positive and negative relationships to global and Northern Hemisphere temperature reconstructions.
Resumo:
During the latest Cretaceous cooling phase, a positive shift in benthic foraminiferal d18O values lasting about 1.5 Myr (71.5-70 Ma) can be observed at a global scale (Campanian-Maastrichtian Boundary Event, CMBE). This d18O excursion is interpreted as being influenced by a change in intermediate- to deep-water circulation or by temporal build-up of Antarctic ice sheets. Here we test whether benthic foraminiferal assemblages from a southern high-latitudinal site near Antarctica (ODP Site 690) are influenced by the CMBE. If the d18O transition reflects a change in intermediate- to deep-water circulation from low-latitude to high-latitude water masses, then this change would result in cooler temperatures, higher oxygen concentration, and possibly lower organic-matter flux at the seafloor, resulting in a major benthic foraminiferal assemblage change. If, however, the d18O transition was mainly triggered by ice formation, no considerable compositional difference in benthic foraminiferal assemblages would be expected. Our data show a separation of the studied succession into two parts with distinctly different benthic foraminiferal assemblages. Species dominating the older part (73.0-70.5 Ma) tolerate less bottom water oxygenation and are typical components of low-latitude assemblages. In contrast, the younger part (70.0-68.0 Ma) is characterized by species that indicate well-oxygenated bottom waters and species common in high-latitude assemblages. We interpret the observed change in benthic foraminiferal assemblages toward a well-oxygenated environment to reflect the onset of a shift from low-latitude toward high-latitude dominated intermediate- to deep-water sources. This implies that a change in oceanic circulation was at least a major component of the CMBE.
Resumo:
The Alleroed biozone encompasses 625 calendar years. The pollenanalytically determined upper and lower boundary is in good agreement with the development of the microfacies. The study of the macrofacies of annually laminated sediments is a useful tool. It yields not only very accurate varve counts but also paleoclimatological and environmental proxy data. The LST -event occurred 200 years before the Younger Dryas. They exIsts no relationship. However, during ten to twenty years following the LST, the lake deposited sediments similar to those at the beginning of the Younger Dryas, which should be due to comparable meteorological conditions.
Resumo:
To better understand the environmental variability during the Holsteinian interglacial, we have palynologically analyzed a new core from Dethlingen, northern Germany, at a decadal resolution. Our data provide insights into the vegetation dynamics and thus also climate variability during the meso- to telocratic forest phases of the interglacial. Temperate mixed forests dominated the regional landscape throughout the Holsteinian. However, changes in the forest composition during the younger stages of the interglacial suggest a climatic transition towards milder conditions in winter. The strong presence of boreal floral elements during the older stages of the Holsteinian interglacial suggests a high seasonality. In contrast, during the younger stages the development of sub-Atlantic and Atlantic floral elements suggests increasingly warm and humid climatic conditions. Peak warming during the younger stage of the Holsteinian is marked by the maximum pollen abundances of Buxus, Abies, and Quercus. Although the vegetation dynamics suggest a general warming trend throughout the Holsteinian interglacial, abrupt as well as gradual changes in the relative abundances of temperate plants indicate considerable climatic variability. In particular, two marked declines in temperate taxa leading to the transient development of boreal and sub-temperate forests indicate short-term climatic oscillations that occurred within full interglacial conditions. The palynological signatures of these two regressive phases in vegetation development differ with regard to the expansion of pioneer trees, the abundances and rates of change of temperate taxa, and the presence of frost-sensitive taxa. These differences point to different mechanisms responsible for the individual regressive phases. Assuming a correlation of the interglacial at Dethlingen with Marine Isotope Stage (MIS) 11, our data suggest that temperate forests prevailed in northern Germany during the younger parts of MIS 11c.
Resumo:
Cape Roberts Project drillcore 1 was obtained from Roberts Ridge, a sea-floor high located at 77°S, 16 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 147 m long with the upper 43.15 metres below the sea floor (revised figure) being dated as Quarternary and the older part of the sequence being Miocene. The core includes nine facies: sandy diamict, muddy diamict, gravel/conglomerate, mud(stone), clay(stone) and carbonate. These facies occure in associations that are repeated in particulare sequences throughout the core, and are interpreted as representing different depositional environments through time. Seven lithofacies associations are interpreted as representing offshore shelf, ice protected/below wave-base; prodeltaic/offshore shelf; delta front/sandy shelf; ice system; subglacial till/rainout diamict/debris flow diamicts singly or in combination; and a carbonate-rich shelf bank. The facies associations are used to infer that the Quaternary section represents deposition on a polar shelf with perhaps two or three glacial fluctuations. The Quaternary carbonate unit indicates a period of ice sheet retreat, but local glacial activity may have increased with an increase in costal precipitation. The Miocene section represents polythermal glacial systems. The older Miocene section is glacially dominated whereas the younger section is much less so. The glacially dominated section may provide evidence for a major glacial advance thar resulted un a low stand of global eustatic sea level at that time. After the low stand, eustatic sea level was gradually rising during deposition of the younger section dominated more by non-glacial processes.
Resumo:
Oxygen isotope measurements in Greenland ice demonstrate that a series of rapid warm-cold oscillations -called Dansgaard-Oeschger events- punctuated the last glaciation (Dansgard et al., 1993, doi:10.1038/364218a0). Here we present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard-Oeschger events (Broecker et al., 1988, doi:10.1016/0033-5894(88)90082-8; 1990, doi:10.1029/PA005i004p00469). Moreover, we show that between 20 and 80 kyr ago, the shifts in ocean-atmosphere temperature are bundled into cooling cycles, lasting on average 10 to 15 kyr, with asymmetrical saw-tooth shapes. Each cycle culminated in an enormous discharge of icebergs into the North Atlantic (a 'Hein-rich event' (Bond et al., 1992, doi:10.1038/360245a0; Broecker et al., 1992, doi:10.1007/BF00193540), followed by an abrupt shift to a warmer climate. These cycles document a previously unrecognized link between ice sheet behaviour and ocean-atmosphere temperature changes. An important question that remains to be resolved is whether the cycles are driven by external factors, such as orbital forcing, or by inter-nal ice-sheet dynamics.
Resumo:
Proxy indicators of sea surface temperature and equatorial divergence based on radiolarian assemblage data, and of trade wind intensity based on eolian grain size data show similar aspects of variability during the late Pleistocene: All indicators fluctuate at higher frequencies than the 100,000-year glacial-interglacial cycle, display reduced amplitude variations since 300,000 years ago, exhibit a change in the record character at about 300,000 years ago (the mid-Brunhes climatic event), and have higher amplitude variations in sediments 300,000-850,000 years old. Time series analyses were conducted to determine the spectral character of each record (delta18O of planktonic foraminifer, sea surface temperature values, equatorial divergence indicators, and wind intensity indicators) and to quantify interrecord coherence and phase relationships. The record was divided at the 300,000-year clear change in climatic variability (nonstationarity). The delta18O-based time scale is better lower in the core so our spectral analyses concentrated on the interval from 402,000-774,000 years. The delta18O spectra show 100,000- and 41,000-year power in the younger portion, 0-300,000 years, and 100,000-, 41,000- and 23,000-year power in the older interval, all highly coherent and in phase with the SPECMAP average stacked isotope record. Unlike the isotope record the dominant period in both the eolian grain size and equatorial divergence indicators is 31,000 years. This period is also important in the sea surface temperature signal where the dominant spectral peak is 100,000 years. The 31,000-year spectral component is coherent and in phase between the eolian and divergence records, confirming the link between atmospheric and ocean surface circulation for the first time in the paleoclimate record. Since the 31,000-year power appears in independent data sets within this core and also appears in other equatorial records [J. Imbrie personal communication, 1987], we assume it to be real and representative of both a nonlinear response to orbital forcing, possibly a combination of orbital tilt and eccentricity, and some resonance phenomenon required to amplify the response at this period so that it appears as a dominant frequency component. The mid-Brunhes climatic event is an important aspect of these records, but its cause remains unknown.
Resumo:
Newly acquired bathymetric and seismic reflection data have revealed mass-transport deposits (MTDs) on the northeastern Cretan margin in the active Hellenic subduction zone. These include a stack of two submarine landslides within the Malia Basin with a total volume of approximately 4.6 km**3 covering an area of about 135 km**2. These two MTDs have different geometry, internal deformations and transport structures. The older and stratigraphic lower MTD is interpreted as a debrite that fills a large part of the Malia Basin, while the second, younger MTD, with an age of at least 12.6 cal. ka B.P., indicate a thick, lens-shaped, partially translational landslide. This MTD comprises multiple slide masses with internal structure varying from highly deformed to nearly undeformed. The reconstructed source area of the older MTD is located in the westernmost Malia Basin. The source area of the younger MTD is identified in multiple headwalls at the slope-basin-transition in 450 m water depth. Numerous faults with an orientation almost parallel to the southwest-northeast-trending basin axis occur along the northern and southern boundaries of the Malia Basin and have caused a partial steepening of the slope-basin-transition. The possible triggers for slope failure and mass-wasting include (i) seismicity and (ii) movement of the uplifting island of Crete from neotectonics of the Hellenic subduction zone, and (iii) slip of clay-mineral-rich or ash-bearing layers during fluid involvement.
Resumo:
A relative sea-level curve for the Holocene is constructed for Polyarny on the Kola Peninsula, northwest Russia. The curve is based on 18 radiocarbon dates of isolation contacts, identified from lithological and diatomological criteria, in nine lake basins situated between 12 and 57 m a.s.l. Most of the lakes show a conformable, regressive I-II-III (marine-transitional-freshwater) facies succession, indicating a postglacial history comprising an early (10,000-9000 radiocarbon years BP) phase of rapid, glacio-isostatically induced emergence (~5 cm/year) and a later phase (after 7000 years BP,) having a moderate rate of emergence (<0.5 cm/year). Three lakes together record a phase of very low rate of emergence or slight sea-level rise at a level of ~27 m a.s.l., between 8500 and 7000 years BP, which correlates with the regional Tapes transgression. Pollen stratigraphy in the highest lake shows that the area was deglaciated before the Younger Dryas and that previously reconstructed Younger Dryas glacier margins along the north Kola coast lie too far north