971 resultados para Piano music - Interpretation (Phrasing, dynamics, etc.)
Resumo:
Dyer and McKune (2013) stated that music tempo has no influence on performance, physiological, and psychophysical variables in well-trained cyclists during high intensity endurance tasks. However, there are important limitations in the methodology of the study. The participants'music preferences and tempo change were not well measured. It is not possible to affirm that music tempo does not influence athletes'performance. Potential areas of future research include: (a) use of instruments to assess the qualities of music; (b) standardizing music of tempo according to exercise type (e.g., running, cycling, etc.); (c) considering training level of the participants (i.e., athletes and non-athletes); and (d) use of instruments to assess concentration during exercise.
Resumo:
The purpose of the study was to examine any differences that exist in the quality of motions employed by pianists when they are sight-reading versus performing repertoire. A secondary question of interest was whether or not an improvement in the efficiency of motion could be observed between two sight-reading trials of the same musical excerpt. While data analysis for the full study is ongoing, the following results from a case study are illustrative.
Resumo:
In this present work we present a methodology that aims to apply the many-body expansion to decrease the computational cost of ab initio molecular dynamics, keeping acceptable accuracy on the results. We implemented this methodology in a program which we called ManBo. In the many-body expansion approach, we partitioned the total energy E of the system in contributions of one body, two bodies, three bodies, etc., until the contribution of the Nth body [1-3]: E = E1 + E2 + E3 + …EN. The E1 term is the sum of the internal energy of the molecules; the term E2 is the energy due to interaction between all pairs of molecules; E3 is the energy due to interaction between all trios of molecules; and so on. In Manbo we chose to truncate the expansion in the contribution of two or three bodies, both for the calculation of the energy and for the calculation of the atomic forces. In order to partially include the many-body interactions neglected when we truncate the expansion, we can include an electrostatic embedding in the electronic structure calculations, instead of considering the monomers, pairs and trios as isolated molecules in space. In simulations we made we chose to simulate water molecules, and use the Gaussian 09 as external program to calculate the atomic forces and energy of the system, as well as reference program for analyzing the accuracy of the results obtained with the ManBo. The results show that the use of the many-body expansion seems to be an interesting approach for reducing the still prohibitive computational cost of ab initio molecular dynamics. The errors introduced on atomic forces in applying such methodology are very small. The inclusion of an embedding electrostatic seems to be a good solution for improving the results with only a small increase in simulation time. As we increase the level of calculation, the simulation time of ManBo tends to largely decrease in relation to a conventional BOMD simulation of Gaussian, due to better scalability of the methodology presented. References [1] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 3, 46 (2007). [2] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 4, 1 (2008). [3] R. Rivelino, P. Chaudhuri and S. Canuto; J. Chem. Phys., 118, 10593 (2003).
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
Simulationen von SiO2 mit dem von van Beest, Kramer und vanSanten (BKS) entwickelten Paarpotenzial erzeugen vielezufriedenstellende Ergebnisse, aber auch charakteristischeSchwachstellen. In dieser Arbeit wird das BKS-Potenzial mitzwei kürzlich vorgeschlagenen Potenzialen verglichen, dieeffektiv Mehrteilchen-Wechselwirkungen beinhalten. Der ersteAnsatz erlaubt dazu fluktuierende Ladungen, der zweiteinduzierbare Polarisierungen auf den Sauerstoffatomen. Die untersuchten Schwachstellen des BKS Potenzialsbeinhalten das Verhältnis der zwei Gitterkonstanten a und cim Quarzübergang, das von BKS falsch beschrieben wird.Cristobalit und Tridymit erscheinen instabil mit BKS.Weiterhin zeigt die BKS-Zustandsdichte charakteristischeAbweichungen von der wahren Zustandsdichte. DerÜbergangsdruck für den Stishovit I-II Übergang wird deutlichüberschätzt. Das Fluktuierende-Ladungs-Modell verbesserteinige der genannten Punkte, reproduziert aber viele andereEigenschaften schlechter als BKS. DasFluktierende-Dipol-Modell dagegen behebt alle genanntenArtefakte. Zusätzlich wird der druckinduzierte Phasenübergang imalpha-Quarz untersucht. Alle Potentiale finden die selbeStruktur für Quarz II. Bei anschliessender Dekompressionerzeugt BKS eine weitere Phase, während die beiden anderenPotentiale wieder zum alpha-Quarz zurückkehren. Weiterhinwerden zwei Methoden entwickelt, um die piezoelektrischenKonstanten bei konstantem Druck zu bestimmen. Die Ergebnissegeben Hinweise auf eine möglicherweisenicht-elektrostatische Natur der Polarisierungen imFluktuierende-Dipole-Modell. Mit dieser Interpretation scheint das Fluktuierende-DipolPotential alle verfügbaren experimentellen Daten am bestenvon allen drei untersuchten Ansätzen zu reproduzieren.
Resumo:
Vortex dynamics in two different classes of superconductors with anisotropic unidirected pinning sites was experimentally investigated by magnetoresistivity measurements: YBCO−films with unidirected twins and Nb-films deposited on faceted $mathrm Al_2O_3$ substrate surfaces. For the interpretation of the experimental results a theoretical model based on the Fokker-Planck equation was used. It was proved by X-ray measurements that YBCO films prepared on (001) $mathrm NdGaO_3$ substrates exhibit only one twin orientation in contrast to YBCO films grown on (100) $mathrm SrTiO_$3 substrates. The magnetoresistivity measurements of the YBCO films with unidirected twin boundaries revealed the existence of two new magnetoresistivity components, which is a characteristic feature of a guided vortex motion: an odd longitudinal component with respect to the magnetic field sign reversal and an even transversal component. However, due to the small coherence length in YBCO and the higher density of point-like defects comparing to high-quality YBCO single crystals, the strength of the isotropic point pinning was comparable with the strength of the pinning produced by twins. This smeared out all effects caused by the pinning anisotropy. The behaviour of the odd longitudinal component was found to be independent of the transport current direction with respect to the twin planes. The magnetoresistivity measurements of faceted Nb films demonstrated the appearance of an odd longitudinal and even transversal component of the magnetoresistivity. The temperature and magnetic field dependences of all relevant magnetoresistivity components were measured. The angles between the average vortex velocity vector and the transport current direction calculated from the experimental data for the different transport current orientations with respect to the facet ridges showed that the vortices moved indeed along the facet ridges. An anomalous Hall effect, i.e. a sign change of the odd transversal magnetoresistivity, has been found in the temperature and magnetic field dependences of the Hall resisitivity of the samples. The theory developed by V.~A.~Shklovskij was used for the explanation of the experimental data. It shows very good agreement with the experiment. The temperature dependence of the even longitudinal magnetoresistivity component of the samples could be very well fitted within the theoretical approach, using for the isotropic and anisotropic pinning potential simple potential with a symmetric triangular potential wells whose depths were estimated from the experimental data.
Resumo:
A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.
Resumo:
In base ad una recensione esaustiva dei riferimenti alla musica e al sonoro nella produzione filosofica di Gilles Deleuze e Félix Guattari, la presente ricerca s’incentra sulla posizione che il pensiero musicale di John Cage occupa in alcuni testi deleuziani. Il primo capitolo tratta del periodo creativo di Cage fra il 1939 e il 1952, focalizzandosi su due aspetti principali: la struttura micro-macrocosmica che contraddistingue i suoi primi lavori, e i quattro elementi che in questo momento sintetizzano per Cage la composizione musicale. Questi ultimi sono considerati in riferimento alla teoria della doppia articolazione che Deleuze e Guattari riprendono da Hjelmslev; entrambi gli aspetti rimandano al sistema degli strati e della stratificazione esposta su Mille piani. Il secondo capitolo analizza la musica dei decenni centrali della produzione cagiana alla luce del luogo in Mille piani dove Cage è messo in rapporto al concetto di “piano fisso sonoro”. Un’attenzione particolare è posta al modo in cui Cage concepisce il rapporto fra durata e materiali sonori, e al grado variabile in cui sono presenti il caso e l’indeterminazione. Le composizioni del periodo in questione sono inoltre viste in riferimento al concetto deleuzo-guattariano di cartografia, e nelle loro implicazioni per il tempo musicale. L’ultimo quindicennio della produzione di Cage è considerata attraverso il concetto di rizoma inteso come teoria delle molteplicità. In primo luogo è esaminata la partitura di Sylvano Bussotti che figura all’inizio di Mille piani; in seguito, i lavori testuali e musicali di Cage sono considerati secondo le procedure compositive cagiane del mesostico, delle parentesi di tempo che concorrono a formare una struttura variabile, e dell’armonia anarchica dell’ultimo Cage.
Resumo:
Liquid crystals (LCs) are an interesting class of soft condensed matter systems characterized by an unusual combination of fluidity and long-range order, mainly known for their applications in displays (LCDs). However, the interest in LC continues to grow pushed by their application in new technologies in medicine, optical imaging, micro and nano technologies etc. In LCDs uniaxial alignment of LCs is mainly achieved by a rubbing process. During this treatment, the surfaces of polymer coated display substrates are rubbed in one direction by a rotating cylinder covered with a rubbing cloth. Basically, LC alignment involves two possible aligning directions: uniaxial planar (homogeneous) and vertical (homeotropic) to the display substrate. An interesting unresolved question concerning LCs regards the origin of their alignment on rubbed surfaces, and in particular on the polymeric ones used in the display industry. Most studies have shown that LCs on the surface of the rubbed polymer film layer are lying parallel to the rubbing direction. In these systems, micrometric grooves are generated on the film surface along the rubbing direction and also the polymer chains are stretched in this direction. Both the parallel aligned microgrooves and the polymer chains at the film surface may play a role in the LC alignment and it is not easy to quantify the effect of each contribution. The work described in this thesis is an attempt to find new microscopic evidences on the origin of LC alignment on polymeric surfaces through molecular dynamics (MD) simulations, which allow the investigation of the phenomenon with atomic detail. The importance of the arrangement of the polymeric chains in LCs alignment was studied by performing MD simulations of a thin film of a typical nematic LC, 4-cyano-4’-pentylbiphenyl (5CB), in contact with two different polymers: poly(methyl methacrylate)(PMMA) and polystyrene (PS). At least four factors are believed to influence the LC alignment: 1. the interactions of LCs with the backbone vinyl chains; 2. the interactions of LCs with the oriented side groups; 3. the anisotropic interactions of LCs with nanometric grooves; 4. the presence of static surface charges. Here we exclude the effect of microgrooves and of static surface charges from our virtual experiment, by using flat and neutral polymer surfaces, with the aim of isolating the chemical driving factors influencing the alignment of LC phases on polymeric surfaces.
Resumo:
Despite several clinical tests that have been developed to qualitatively describe complex motor tasks by functional testing, these methods often depend on clinicians' interpretation, experience and training, which make the assessment results inconsistent, without the precision required to objectively assess the effect of the rehabilitative intervention. A more detailed characterization is required to fully capture the various aspects of motor control and performance during complex movements of lower and upper limbs. The need for cost-effective and clinically applicable instrumented tests would enable quantitative assessment of performance on a subject-specific basis, overcoming the limitations due to the lack of objectiveness related to individual judgment, and possibly disclosing subtle alterations that are not clearly visible to the observer. Postural motion measurements at additional locations, such as lower and upper limbs and trunk, may be necessary in order to obtain information about the inter-segmental coordination during different functional tests involved in clinical practice. With these considerations in mind, this Thesis aims: i) to suggest a novel quantitative assessment tool for the kinematics and dynamics evaluation of a multi-link kinematic chain during several functional motor tasks (i.e. squat, sit-to-stand, postural sway), using one single-axis accelerometer per segment, ii) to present a novel quantitative technique for the upper limb joint kinematics estimation, considering a 3-link kinematic chain during the Fugl-Meyer Motor Assessment and using one inertial measurement unit per segment. The suggested methods could have several positive feedbacks from clinical practice. The use of objective biomechanical measurements, provided by inertial sensor-based technique, may help clinicians to: i) objectively track changes in motor ability, ii) provide timely feedback about the effectiveness of administered rehabilitation interventions, iii) enable intervention strategies to be modified or changed if found to be ineffective, and iv) speed up the experimental sessions when several subjects are asked to perform different functional tests.
Resumo:
Thanks to the increasing slenderness and lightness allowed by new construction techniques and materials, the effects of wind on structures became in the last decades a research field of great importance in Civil Engineering. Thanks to the advances in computers power, the numerical simulation of wind tunnel tests has became a valid complementary activity and an attractive alternative for the future. Due to its flexibility, during the last years, the computational approach gained importance with respect to the traditional experimental investigation. However, still today, the computational approach to fluid-structure interaction problems is not as widely adopted as it could be expected. The main reason for this lies in the difficulties encountered in the numerical simulation of the turbulent, unsteady flow conditions generally encountered around bluff bodies. This thesis aims at providing a guide to the numerical simulation of bridge deck aerodynamic and aeroelastic behaviour describing in detail the simulation strategies and setting guidelines useful for the interpretation of the results.
Resumo:
Cardiotocography (CTG) is a widespread foetal diagnostic methods. However, it lacks of objectivity and reproducibility since its dependence on observer's expertise. To overcome these limitations, more objective methods for CTG interpretation have been proposed. In particular, many developed techniques aim to assess the foetal heart rate variability (FHRV). Among them, some methodologies from nonlinear systems theory have been applied to the study of FHRV. All the techniques have proved to be helpful in specific cases. Nevertheless, none of them is more reliable than the others. Therefore, an in-depth study is necessary. The aim of this work is to deepen the FHRV analysis through the Symbolic Dynamics Analysis (SDA), a nonlinear technique already successfully employed for HRV analysis. Thanks to its simplicity of interpretation, it could be a useful tool for clinicians. We performed a literature study involving about 200 references on HRV and FHRV analysis; approximately 100 works were focused on non-linear techniques. Then, in order to compare linear and non-linear methods, we carried out a multiparametric study. 580 antepartum recordings of healthy fetuses were examined. Signals were processed using an updated software for CTG analysis and a new developed software for generating simulated CTG traces. Finally, statistical tests and regression analyses were carried out for estimating relationships among extracted indexes and other clinical information. Results confirm that none of the employed techniques is more reliable than the others. Moreover, in agreement with the literature, each analysis should take into account two relevant parameters, the foetal status and the week of gestation. Regarding the SDA, results show its promising capabilities in FHRV analysis. It allows recognizing foetal status, gestation week and global variability of FHR signals, even better than other methods. Nevertheless, further studies, which should involve even pathological cases, are necessary to establish its reliability.
Resumo:
Global warming and ocean acidification, due to rising atmospheric levels of CO2, represent an actual threat to terrestrial and marine environments. Since Industrial Revolution, in less of 250 years, pH of surface seawater decreased on average of 0.1 unit, and is expected to further decreases of approximately 0.3-0.4 units by the end of this century. Naturally acidified marine areas, such as CO2 vent systems at the Ischia Island, allow to study acclimatation and adaptation of individual species as well as the structure of communities, and ecosystems to OA. The main aim of this thesis was to study how hard bottom sublittoral benthic assemblages changed trough time along a pH gradient. For this purpose, the temporal dynamics of mature assemblages established on artificial substrates (volcanic tiles) over a 3 year- period were analysed. Our results revealed how composition and dynamics of the community were altered and highly simplified at different level of seawater acidification. In fact, extreme low values of pH (approximately 6.9), affected strongly the assemblages, reducing diversity both in terms of taxa and functional groups, respect to lower acidification levels (mean pH 7.8) and ambient conditions (8.1 unit). Temporal variation was observed in terms of species composition but not in functional groups. Variability was related to species belonging to the same functional group, suggesting the occurrence of functional redundancy. Therefore, the analysis of functional groups kept information on the structure, but lost information on species diversity and dynamics. Decreasing in ocean pH is only one of many future global changes that will occur at the end of this century (increase of ocean temperature, sea level rise, eutrophication etc.). The interaction between these factors and OA could exacerbate the community and ecosystem effects showed by this thesis.
Resumo:
Homeorhetic Assemblies indaga le potenzialità tettoniche ed architettoniche derivanti dallo studio dei sistemi biologici decentralizzati, dei loro comportamenti e delle relazioni dinamiche con la colonia in termini di processi adattativi e costruttivi continui nel tempo. La ragione di questo interesse è radicata nei principi dell’ecologia applicata al design ed alle tecnologie di fabbricazione contemporanee, che vanno al di là della mera imitazione formale: ci si è quindi chiesto come raggiungere una spazialità complessa ed articolata, omogeneità di prestazioni ed una struttura continua caratterizzata da molti elementi aventi le stesse caratteristiche di forma e materiale. L’ecologia è lo studio di un insieme di economie, ovvero rapporti di scambio, tra un organismo ed il suo ambiente e l’efficenza dei pattern distributivi che derivano da queste relazioni sono fondamentali al fine del successo evolutivo del sistema stesso. I sistemi su cui ci si è concentrati sono caratterizzati dalla capacità di creare strutture a buon mercato (con l’uso di istruzioni semplici ed un unico materiale) e ad elevato grado di complessità ed efficienza, armonizzando l’aspetto formale con l’organizzazione materica e fisiologica. Il modello di comportamento considerato riguarda le dinamiche alla base della creazione degli alveari naturali creati dalle api millifere. Queste caratteristiche sono state codificate nella programmazione di un sistema multi agente composto da agenti autonomi in grado di interagire in un ambiente eterogeneo e capaci di depositare selettivamente elementi in una struttura composta da springs e particles, periodicamente stabilizzata ed ottimizzata. In un tale sistema, a priori sono note solo le relazioni locali per i singoli agenti ed il comportamento strutturale generale, mentre gli oggetti e gli eventi emergono in maniera non predeterminata come risultato di queste interazioni nello spazio e nel tempo. I risultati appaiono estremamente complessi ed eterogenei nella loro organizzazione spaziale, pur emergendo un set di elementi identificabili nella loro specifica singolarità (come ad esempio superfici, colonne, capriate etc...) ma che generano strutture continue, e creano grande differenziazione di densità e di disposizione dei singoli elementi all’interno della struttura. La ridondanza strutturale ottenuta è una scelta deliberata e permessa dall’automatizzazione della fase di costruzione attraverso la programmazione di robot, tramite i quali si intende realizzare un prototipo fisico delle strutture ottenute.