913 resultados para Phase rule and equilibrium.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal barrier coatings (TBCs) of La2Zr2O7 (LZ) with the addition of 3 wt.% Y2O3 (LZ3Y) were deposited by electron beam-physical vapor deposition (EB-PVD). The phase stabilities, thermophysical and mechanical properties, and chemical compositions of these ceramics and coatings were studied in detail. The phase stability and thermal expansion behavior of LZ3Y bulk material are identical to those of LZ bulk material, but the mechanical properties of the former are superior to those of the latter. Elemental analysis and X-ray diffraction indicate that compositional deviation of LZ coating can be optimized after doping by 3 wt.% Y2O3, Y2O3 acts as a dopant as well as a process regulator. The optimal composition of LZ3Y coating could be effectively achieved by the addition of excess Y2O3 into the ingot and by properly controlling the current of electron beam (i.e. similar to 650 mA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L-lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen-bonded N-H stretching band. The interconversion between the "free" and hydrogen-bonded N-H and C=O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C=O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 degrees C/min or higher, the crystallization of the PLLA soft segments was prohibited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructures and mechanical properties of the Mg-8Gd-xZn-0.4Zr (x = 0, 1 and 3 wt.%) alloys in the as-cast, as-extruded and extruded-T5 conditions, have been investigated. The peak-aged Mg-8Gd-1Zn-0.4Zr alloy during isothermal ageing at 423 K acquires highest mechanical properties, with the highest ultimate tensile strength and yield tensile strength of 314 and 217 MPa, respectively. Addition of Zn has obvious effect on age hardening responses, especially for 1 wt.% Zn addition. It is due to a uniform distribution of beta' phase which can impede the movement of dislocations. However, addition of 3 wt.% Zn to the Mg-8Gd-0.4Zr alloy leads to a precipitation of Mg3Zn3Gd2 phase (W-phase). This phase is incoherent with interface of the matrix and becomes cores of the fracture in tensile test at room or elevated temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of crystal polymorph and size is very important in many application fields. Herein we demonstrate that Langmuir-Blodgett (LB) films of stearic acid (SA) and octadecylamine (ODA) can serve as templates and generate different polymorphs of glycine crystals. In the neutral aqueous solutions, gamma-glycine crystallizes on LB films of ODA while the polymorphic outcome becomes the (x-form on LB films of SA. These observed results could be explained by the electrostatic interactions and geometric lattice matching at the LB film/crystal interfaces, respectively. By keeping the appropriate supersaturation, we have successfully controlled the number of crystals grown on LB films; for example, in some certain cases, only one piece of crystal was grown on LB films in solution. Therefore, large crystals of centimeter size could be prepared. These experimental results suggest a new approach to produce an organic crystal with bulk scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti45Zr35Ni17Cu3 amorphous and icosahedral quasicrystal line (I-phase) powders were synthesized by mechanical alloying (MA) and subsequent annealing, the phase structure and hydrogen absorption properties of two powders were investigated. XRD analysis indicated that the MAed powder was an amorphous phase and annealed powder was an I-phase. Two alloy exhibited excellent hydrogen adsorption property and started to absorb hydrogen without induction time. PCT measurement showed that the plateau pressure of the amorphous powders was obviously higher than that of the I-phase powders. After the first hydrogen cycling, the partial amorphous phase changed to (Zr, Ti)H-2 phases, and the I-phase was steady. Similar hydride phases Ti2ZrH4 and (Zr, Ti)H-2 were also formed after the second hydrogen cycling for the amorphous and I-phase alloy powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lightest density of Mg has stimulated renewed interest in Mg based alloys for applications in the automotive, aerospace and communications industries. However, Mg in the pure form has relatively low strength, limited ductility and is susceptible to corrosion. Great efforts have been made to improve the mechanical properties of Mg alloys. Alloying Mg with other elements is one of the most important methods. An important class of Mg alloys is the Mg-Zn-RE system (RE = rare earth elements). In recent few decades, a series of new Mg-Zn-RE system alloys have been obtained, and detailed the structure and mechanical properties of the alloys. In this paper, the structure and mechanical properties of the Mg-Zn-RE alloys have been summarized. It showed that these alloys have high strength and they are prospected to be widely used in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method of measuring the mean size of solvent clusters in swollen polymer membrane is presented in this paper. This method is based on a combination of inverse gas chromatography (IGC) and equilibrium swelling. The mechanism is that weight fraction activity coefficient of solvent in swollen polymer is influenced by its clusters size. The mean clusters size of solvent in swollen polymer can be calculated as the quotient of the weight fraction activity coefficient of clustering system dividing the weigh fraction activity coefficient of non-clustering system. In this experiment, the weigh fraction activity coefficient of non-clustering system was measured with IGC. Methanol, ethanol and polyimide systems were tested with the new method at three temperatures, 20, 40, and 60degreesC. The mean clusters size of methanol in polyimide was five, four, and three at each temperature condition, respectively. Ethanol did not form clusters (the mean clusters size was one). In contrast to the inherent narrow temperature range in DSC, XRD, and FTIR methods, the temperature range in IGC and equilibrium swelling is broad. Compared with DSC. XRD. and FTIR, this new method can detect the clusters of solvent-polymer system at higher temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the synthesis of a novel maleimide-terminated thioetherimide oligomer and its copolymefization with reactive solvents bearing vinyl. Starting from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride, 2,2',3,3'-thiodiphenyl tertracaboxylic dianhydride (3,3'-TDPA) and 3,3',4,4'-thiodiphenyl tertracaboxylic dianhydride (4,4'-TDPA) were synthesized. Thereby, a novel maleimide-terminated thioetherimide oligomer was prepared from. 3,3-TDPA, 4,4'-TDPA, 3,3'-dimethyl-4,4-diaminodiphenylmethane (DMMDA) and maleic anhydride. Binary and ternary copolymer resin were derived from corresponding binary and ternary homogeous solution consisting of thioetherimide oligomer, reactive solvent N-vinylpyrrolidone (NVP) or N,N'-dimethylacrylamide (DMAA) and divinylbenzene (DVB) as modifier, initiated either by gamma ray irradiation or by benzoyl peroxide (BPO). Thermal and mechanical properties of copolymer resin are determined and compared in terms of the kind of reactive solvent, addition of modifier DVB. The effect of initiation approach on property of final copolymer resin were studied. Phase separation and sub-transition of ternary copolymer resin induced by BPO are observed, which could be accounted for by thermal movement of DMAA molecules during thermal initiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles (Au-MES and Ag-MES) are synthesized by one-phase method and characterized by TEM, TGA and XPS techniques, UV-vis and FTIR spectra. Both Au-MES and Ag-MES nanoparticles are soluble in the water up to 2.0 mg/ml and the stability of AU-MES is much better than that of Ag-MES. When dissolved in the water. they behave like a polyanion and can be used to build multilayer films with polyaniline (PANI) by way of layer-by-layer. A new approach is presented to fabricate the Multilayer films of Au-MES/PANI and Ag-MES/PAN]. The assembly mechanism of these multilayer films is also discussed. We anticipate highly conducting PANI films can be obtained by doping with these nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y2O3:RE3+ (RE = Eu, Tb, Dy) porous nanotubes were first synthesized using carbon nanotubes as template. The morphology of the coated precursors and porous Y2O3:Eu3+ nanotubes was determined by scanning electron Microscopy (SEM) and transmission electron microscopy (TEM). It was found that the coating of precursors on carbon nanotubes (CNTs) is continuous and the thickness is about 15 nm, after calcinated, the Y2O3:Eu3+ nanotubes are porous with the diameter size in the range of 50-80 nm and the length in micrometer scale. X-ray diffraction (XRD) patterns confirmed that the samples are cubic phase Y2O3 and the photoluminescence studies showed that the porous rare earth ions doped nanotubes possess characteristic emission of Eu3+, Tb3+, and Dy3+. This method may also provide a novel approach to produce other inorganic porous nanotubes used in catalyst and sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic and electrochemical properties of icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy powder as negative electrode material of Ni-MH battery have been investigated at different temperatures. The calculated results show that the apparent activation enthalpy of the charge-transfer reaction is 43.89 kJ mol(-1), and the activation energy of hydrogen diffusion is 21.03 kJ mol(-1). The exchange current density and the diffusion coefficient of hydrogen in the bulky electrode increase with increasing temperature, indicating that increasing temperature is beneficial to charge-transfer reaction and hydrogen diffusion. As a result, the maximum discharge capacity, activation property and high-rate dischargeability are greatly improved with increasing temperature. However, the charge retention and the cycling stability degrade with the increase of the temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-8Gd-0.6Zr-xNd-yY (mass%) alloys which containing different Nd:Y mass ratio of 3:0, 2:1, 1:2 and 0:3 with a constant x + y = 3 were prepared by metal mould casting method, and the microstructure, aging behaviour and tensile properties have been investigated. The fibrous eutectic areas along the boundaries enlarge clearly in the as-cast alloys containing Y element, and the fine grain boundaries and dispersed precipitation are observed in the aged alloys. The Mg-8Gd-0.6Zr-2Nd-Y alloy exhibits notably age-hardening behaviour and the highest mechanical property. The ultimate tensile strength and yield strength of Mg-8Gd-0.6Zr-2Nd-Y alloy in the peak aged hardness are 293 and 221 MPa at room temperature, 248 and 191 MPa at 230 degrees C. The improvement of age-hardening response and tensile properties is mainly attributed to the quadrate-like stable Mg5RE precipitate, which forms readily and orderly in aged Mg-8Gd-0.6Zr-2Nd-Y alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene-co-propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR-graft-GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR-graft-GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR-graft-GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR-graft-GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR-graft-GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR-graft-GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR-graft-GMA1.3 blend (1.3 indicates degree of grafting).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(W0.5Al0.5)C-0.5 substoichiometric compound is synthesized by a combination of mechanical milling and high-pressure reactive sintering. X-ray diffraction is used to monitor the phase changes and crystallization of (W0.5Al0.5) C-0.5 during the whole reaction process. As a result, (W0.5Al0.5) C-0.5 is identified as the hexagonal WC-type belonging to the P-6m2 space group (No. 187), and the lattice parameters of (W0.5Al0.5)C-0.5 are calculated to be a = 2.907 (1) angstrom, c = 2.838 (1) angstrom, which are very similar to those of WC even if there are approximately 50 pct carbon vacancies in the cell of (W0.5Al0.5)C-0.5 as compared with WC. The substoichiometric (W0.5Al0.5)C-0.5 compound has a Vickers microhardness of 2385 +/- 70 kg mm(-2), which is as high as that of WC, while its density is far lower than that of WC.