992 resultados para Particle Classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of the drive towards waste-poor world and reserving the non-renewable materials, recycling the construction and demolition materials become very essential. Now reuse of the recycled concrete aggregate more than 4 mm in producing new concrete is allowed but with natural sand a fine aggregate while. While the sand portion that represent about 30\% to 60\% of the crushed demolition materials is disposed off. To perform this research, recycled concrete sand was produced in the laboratory while nine recycled sands produced from construction and demolitions materials and two sands from natural crushed limestone were delivered from three plants. Ten concrete mix designs representing the concrete exposition classes XC1, XC2, XF3 and XF4 according to European standard EN 206 were produced with partial and full replacement of natural sand by the different recycled sands. Bituminous mixtures achieving the requirements of base courses according to Germany standards and both base and binder courses according to Egyptian standards were produced with the recycled sands as a substitution to the natural sands. The mechanical properties and durability of concrete produced with the different recycled sands were investigated and analyzed. Also the volumetric analysis and Marshall test were performed hot bituminous mixtures produced with the recycled sands. According to the effect of replacement the natural sand by the different recycled sands on the concrete compressive strength and durability, the recycled sands were classified into three groups. The maximum allowable recycled sand that can be used in the different concrete exposition class was determined for each group. For the asphalt concrete mixes all the investigated recycled sands can be used in mixes for base and binder courses up to 21\% of the total aggregate mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-stationary nonlinear Navier-Stokes equations describe the motion of a viscous incompressible fluid flow for 0particle method to develop a system of approximate equations. We show that this system can be solved uniquely and globally in time and that its solution has a high degree of spatial regularity. Moreover we prove that the system of approximate solutions has an accumulation point satisfying the Navier-Stokes equations in a weak sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the occupation of the single particle levels on the impact parameter dependent K - K charge transfer occuring in collisions of 90 keV Ne{^9+} on Ne was studied using coupled channel calculations. The energy eigenvalues and matrixelements for the single particle levels were taken from ab initio self consistent MO-LCAO-DIRAC-FOCK-SLATER calculations with occupation numbers corresponding to the single particle amplitudes given by the coupled channel calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Einsatz der Particle Image Velocimetry (PIV) zur Analyse selbsterregter Strömungsphänomene und das dafür notwendige Auswerteverfahren werden in dieser Arbeit beschrieben. Zur Untersuchung von solchen Mechanismen, die in Turbo-Verdichtern als Rotierende Instabilitäten in Erscheinung treten, wird auf Datensätze zurückgegriffen, die anhand experimenteller Untersuchungen an einem ringförmigen Verdichter-Leitrad gewonnen wurden. Die Rotierenden Instabilitäten sind zeitabhängige Strömungsphänomene, die bei hohen aerodynamischen Belastungen in Verdichtergittern auftreten können. Aufgrund der fehlenden Phaseninformation kann diese instationäre Strömung mit konventionellen PIV-Systemen nicht erfasst werden. Die Kármánsche Wirbelstraße und Rotierende Instabilitäten stellen beide selbsterregte Strömungsvorgänge dar. Die Ähnlichkeit wird genutzt um die Funktionalität des Verfahrens anhand der Kármánschen Wirbelstraße nachzuweisen. Der mittels PIV zu visualisierende Wirbeltransport erfordert ein besonderes Verfahren, da ein externes Signal zur Festlegung des Phasenwinkels dieser selbsterregten Strömung nicht zur Verfügung steht. Die Methodik basiert auf der Kopplung der PIV-Technik mit der Hitzdrahtanemometrie. Die gleichzeitige Messung mittels einer zeitlich hochaufgelösten Hitzdraht-Messung ermöglicht den Zeitpunkten der PIV-Bilder einen Phasenwinkel zuzuordnen. Hierzu wird das Hitzdrahtsignal mit einem FFT-Verfahren analysiert, um die PIV-Bilder entsprechend ihrer Phasenwinkel zu gruppieren. Dafür werden die aufgenommenen Bilder auf der Zeitachse der Hitzdrahtmessungen markiert. Eine systematische Analyse des Hitzdrahtsignals in der Umgebung der PIV-Messung liefert Daten zur Festlegung der Grundfrequenz und erlaubt es, der markierten PIV-Position einen Phasenwinkel zuzuordnen. Die sich aus den PIV-Bildern einer Klasse ergebenden Geschwindigkeitskomponenten werden anschließend gemittelt. Aus den resultierenden Bildern jeder Klasse ergibt sich das zweidimensionale zeitabhängige Geschwindigkeitsfeld, in dem die Wirbelwanderung der Kármánschen Wirbelstraße ersichtlich wird. In hierauf aufbauenden Untersuchungen werden Zeitsignale aus Messungen in einem Verdichterringgitter analysiert. Dabei zeigt sich, dass zusätzlich Filterfunktionen erforderlich sind. Im Ergebnis wird schließlich deutlich, dass die Übertragung der anhand der Kármánschen Wirbelstraße entwickelten Methode nur teilweise gelingt und weitere Forschungsarbeiten erforderlich sind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are numerous text documents available in electronic form. More and more are becoming available every day. Such documents represent a massive amount of information that is easily accessible. Seeking value in this huge collection requires organization; much of the work of organizing documents can be automated through text classification. The accuracy and our understanding of such systems greatly influences their usefulness. In this paper, we seek 1) to advance the understanding of commonly used text classification techniques, and 2) through that understanding, improve the tools that are available for text classification. We begin by clarifying the assumptions made in the derivation of Naive Bayes, noting basic properties and proposing ways for its extension and improvement. Next, we investigate the quality of Naive Bayes parameter estimates and their impact on classification. Our analysis leads to a theorem which gives an explanation for the improvements that can be found in multiclass classification with Naive Bayes using Error-Correcting Output Codes. We use experimental evidence on two commonly-used data sets to exhibit an application of the theorem. Finally, we show fundamental flaws in a commonly-used feature selection algorithm and develop a statistics-based framework for text feature selection. Greater understanding of Naive Bayes and the properties of text allows us to make better use of it in text classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach to multiclass tumor classification using Artificial Neural Networks (ANNs) was introduced in a recent paper cite{Khan2001}. The method successfully classified and diagnosed small, round blue cell tumors (SRBCTs) of childhood into four distinct categories, neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS), using cDNA gene expression profiles of samples that included both tumor biopsy material and cell lines. We report that using an approach similar to the one reported by Yeang et al cite{Yeang2001}, i.e. multiclass classification by combining outputs of binary classifiers, we achieved equal accuracy with much fewer features. We report the performances of 3 binary classifiers (k-nearest neighbors (kNN), weighted-voting (WV), and support vector machines (SVM)) with 3 feature selection techniques (Golub's Signal to Noise (SN) ratios cite{Golub99}, Fisher scores (FSc) and Mukherjee's SVM feature selection (SVMFS))cite{Sayan98}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimuli outside classical receptive fields significantly influence the neurons' activities in primary visual cortex. We propose that such contextual influences are used to segment regions by detecting the breakdown of homogeneity or translation invariance in the input, thus computing global region boundaries using local interactions. This is implemented in a biologically based model of V1, and demonstrated in examples of texture segmentation and figure-ground segregation. By contrast with traditional approaches, segmentation occurs without classification or comparison of features within or between regions and is performed by exactly the same neural circuit responsible for the dual problem of the grouping and enhancement of contours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relation between support vector machines (SVMs) for regression (SVMR) and SVM for classification (SVMC). We show that for a given SVMC solution there exists a SVMR solution which is equivalent for a certain choice of the parameters. In particular our result is that for $epsilon$ sufficiently close to one, the optimal hyperplane and threshold for the SVMC problem with regularization parameter C_c are equal to (1-epsilon)^{- 1} times the optimal hyperplane and threshold for SVMR with regularization parameter C_r = (1-epsilon)C_c. A direct consequence of this result is that SVMC can be seen as a special case of SVMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-training is a semi-supervised learning method that is designed to take advantage of the redundancy that is present when the object to be identified has multiple descriptions. Co-training is known to work well when the multiple descriptions are conditional independent given the class of the object. The presence of multiple descriptions of objects in the form of text, images, audio and video in multimedia applications appears to provide redundancy in the form that may be suitable for co-training. In this paper, we investigate the suitability of utilizing text and image data from the Web for co-training. We perform measurements to find indications of conditional independence in the texts and images obtained from the Web. Our measurements suggest that conditional independence is likely to be present in the data. Our experiments, within a relevance feedback framework to test whether a method that exploits the conditional independence outperforms methods that do not, also indicate that better performance can indeed be obtained by designing algorithms that exploit this form of the redundancy when it is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade, large and costly instruments are being replaced by system based on microfluidic devices. Microfluidic devices hold the promise of combining a small analytical laboratory onto a chip-sized substrate to identify, immobilize, separate, and purify cells, bio-molecules, toxins, and other chemical and biological materials. Compared to conventional instruments, microfluidic devices would perform these tasks faster with higher sensitivity and efficiency, and greater affordability. Dielectrophoresis is one of the enabling technologies for these devices. It exploits the differences in particle dielectric properties to allow manipulation and characterization of particles suspended in a fluidic medium. Particles can be trapped or moved between regions of high or low electric fields due to the polarization effects in non-uniform electric fields. By varying the applied electric field frequency, the magnitude and direction of the dielectrophoretic force on the particle can be controlled. Dielectrophoresis has been successfully demonstrated in the separation, transportation, trapping, and sorting of various biological particles.