830 resultados para PRINCIPAL COMPONENTS-ANALYSIS
Resumo:
EVAPORATIVE LIGHT-SCATTERING DETECTOR FOR ANALYSIS OF NATURAL PRODUCTS. The interest in the use of evaporative light scattering detector (ELSD) for the analysis of different classes of natural products has grown over the years. This is because this detector has become an excellent alternative compared to other types of detectors, such as the refractive index detector and the ultraviolet (UV) detector. This review describes the basic principles of ELSD functioning and discusses the advantages and disadvantages in using an ELSD for the analysis of organic compounds. Additionally, an overview, covering the last 23 years, of ELSD applications in natural products analysis (saponins, terpenes, carbohydrates, glycosides, alkaloids, steroids, flavonoids, peptides, polyketides, coumarins and iridoids) is presented and discussed.
Resumo:
Polymeric sensors with improved resistance to organic solvents were produced via the layer-by-layer thin film deposition followed by chemical cross-linking. According to UV-vis spectroscopy, the mass loss of polyaniline/poly(vinyl alcohol) and polyaniline/novolac-type resin based films deposited onto glass slides was less than 20% when they were submitted to successive immersions (up to 3,000 immersion cycles) into commercially available ethanol and gasoline fuel samples. Polyallylamine hydrochloride/nickel tetrasulfonated phthalocyanine films presented similar stability. The electrical responses assessed by impedance spectroscopy of films deposited onto Au-interdigitated microelectrodes were relatively unaffected after continuous or cyclic immersions into both fuels. After these studies, an array including these polymeric sensors was employed to detect adulteration in ethanol and gasoline samples. After principal component analysis, it was possible to conclude that the proposed sensor array is capable to discriminate with remarkable reproducibility ethanol samples containing different amounts of water or else gasoline samples containing different amounts of ethanol. In both examples, more than 90% of data variance was retained in the first principal component. For each type of sample, ethanol and gasoline, it was found a linear correlation between one of the principal components and the sample's composition. These findings allow one to conclude that these films present great potential for the development of reliable and low-cost sensors for fuel analysis in liquid phase.
Resumo:
The purpose of this study was to evaluate the antioxidant activity of honey from different entomological sources which were harvested in the dry season of 2008-2009 from distinct mesoregions of the State of Alagoas in the North East of Brazil. Honey produced by five different species of bees, even from the same region and season, showed a statistically significant difference (p <0.05) in the content of phenols, flavonoids and antioxidants, with higher levels of these compounds found in honey produced by Plebeia spp. and A. mellifera. Honey from stingless bees was quite different from that of A. mellifera, especially from the Plebeia spp. A dendrogram of the five species of bees showed the formation of 3 groups, one being formed by Apis mellifera, one by the genus Melipona (M. subnitida, M. quadrifasciata and M. scutellaris) and another formed by Plebeia spp.
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in Sao Jose do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
In humans and other mammals, sperm morphology has been considered one of the most important predictive parameters of fertility. The objective was to determine the presence and distribution of sperm head morphometric subpopulations in a nonhuman primate model (Callithrix jacchus), using an objective computer analysis system and principal component analysis (PCA) methods to establish the relationship between the subpopulation distribution observed and among-donor variation. The PCA method revealed a stable number of principal components in all donors studied, that represented more than 85% of the cumulative variance in all cases. After cluster analysis, a variable number (from three to seven) sperm morphometric subpopulations were identified with defined sperm dimensions and shapes. There were differences in the distribution of the sperm morphometric subpopulations (P < 0.001) in all ejaculates among the four donors analyzed. In conclusion, in this study, computerized sperm analysis methods combined with PCA cluster analyses were useful to identify, classify, and characterize various head sperm morphometric subpopulations in nonhuman primates, yielding considerable biological information. In addition, because all individuals were kept in the same conditions, differences in the distribution of these subpopulations were not attributed to external or management factors. Finally, the substantial information derived from subpopulation analyses provided new and relevant biological knowledge which may have a practical use for future studies in human and nonhuman primate ejaculates, including identifying individuals more suitable for assisted reproductive technologies. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing ~25,000 genes. Results Principal Component Analysis (PCA) combined with the Maximum-entropy Linear Discriminant Analysis (MLDA) were applied in order to identify genes with the most discriminative information between normal and tumoral prostatic tissues. Data analysis was carried out using three different approaches, namely: (i) differences in gene expression levels between normal and tumoral conditions from an univariate point of view; (ii) in a multivariate fashion using MLDA; and (iii) with a dependence network approach. Our results show that malignant transformation in the prostatic tissue is more related to functional connectivity changes in their dependence networks than to differential gene expression. The MYLK, KLK2, KLK3, HAN11, LTF, CSRP1 and TGM4 genes presented significant changes in their functional connectivity between normal and tumoral conditions and were also classified as the top seven most informative genes for the prostate cancer genesis process by our discriminant analysis. Moreover, among the identified genes we found classically known biomarkers and genes which are closely related to tumoral prostate, such as KLK3 and KLK2 and several other potential ones. Conclusion We have demonstrated that changes in functional connectivity may be implicit in the biological process which renders some genes more informative to discriminate between normal and tumoral conditions. Using the proposed method, namely, MLDA, in order to analyze the multivariate characteristic of genes, it was possible to capture the changes in dependence networks which are related to cell transformation.
Resumo:
The present study aimed to comparatively verify the relation between the hermit crabs and the shells they use in two populations of Loxopagurus loxochelis. Samples were collected monthly from July 2002 to June 2003, at Caraguatatuba and Ubatuba Bay, São Paulo, Brazil. The animals sampled had their sex identified, were weighed and measured; their shells were identified, measured and weighed, and their internal volume determined. To relate the hermit crab's characteristics and the shells' variables, principal component analysis (PCA) and a regression tree were used. According to the PCA analysis, the three gastropod shells most frequently used by L. loxochelis varied in size. The regression tree successfully explained the relationship between the hermit crab's characteristics and the internal volume of the inhabited shell. It can be inferred that the relationship between the morphometry of an individual hermit crab and its shell is not straightforward and it is impossible to explain only on the basis of direct correlations between the body's and the shell's attributes. Several factors (such as the morphometry and the availability of the shell, environmental conditions and inter- and intraspecific competition) interact and seem to be taken into consideration by the hermit crabs when they choose a shell, resulting in the diversified pattern of shell occupancy shown here and elsewhere.
Resumo:
Abstract Background Despite new brain imaging techniques that have improved the study of the underlying processes of human decision-making, to the best of our knowledge, there have been very few studies that have attempted to investigate brain activity during medical diagnostic processing. We investigated brain electroencephalography (EEG) activity associated with diagnostic decision-making in the realm of veterinary medicine using X-rays as a fundamental auxiliary test. EEG signals were analysed using Principal Components (PCA) and Logistic Regression Analysis Results The principal component analysis revealed three patterns that accounted for 85% of the total variance in the EEG activity recorded while veterinary doctors read a clinical history, examined an X-ray image pertinent to a medical case, and selected among alternative diagnostic hypotheses. Two of these patterns are proposed to be associated with visual processing and the executive control of the task. The other two patterns are proposed to be related to the reasoning process that occurs during diagnostic decision-making. Conclusions PCA analysis was successful in disclosing the different patterns of brain activity associated with hypothesis triggering and handling (pattern P1); identification uncertainty and prevalence assessment (pattern P3), and hypothesis plausibility calculation (pattern P2); Logistic regression analysis was successful in disclosing the brain activity associated with clinical reasoning success, and together with regression analysis showed that clinical practice reorganizes the neural circuits supporting clinical reasoning.
Resumo:
In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
It is well known that the deposition of gaseous pollutants and aerosols plays a major role in causing the deterioration of monuments and built cultural heritage in European cities. Despite of many studies dedicated to the environmental damage of cultural heritage, in case of cement mortars, commonly used in the 20th century architecture, the deterioration due to air multipollutants impact, especially the formation of black crusts, is still not well explored making this issue a challenging area of research. This work centers on cement mortars – environment interactions, focusing on the diagnosis of the damage on the modern built heritage due to air multi-pollutants. For this purpose three sites, exposed to different urban areas in Europe, were selected for sampling and subsequent laboratory analyses: Centennial Hall, Wroclaw (Poland), Chiesa dell'Autostrada del Sole, Florence (Italy), Casa Galleria Vichi, Florence (Italy). The sampling sessions were performed taking into account the height from the ground level and protection from rain run off (sheltered, partly sheltered and exposed areas). The complete characterization of collected damage layer and underlying materials was performed using a range of analytical techniques: optical and scanning electron microscopy, X ray diffractometry, differential and gravimetric thermal analysis, ion chromatography, flash combustion/gas chromatographic analysis, inductively coupled plasma-optical emission spectrometer. The data were elaborated using statistical methods (i.e. principal components analyses) and enrichment factor for cement mortars was calculated for the first time. The results obtained from the experimental activity performed on the damage layers indicate that gypsum, due to the deposition of atmospheric sulphur compounds, is the main damage product at surfaces sheltered from rain run-off at Centennial Hall and Casa Galleria Vichi. By contrast, gypsum has not been identified in the samples collected at Chiesa dell'Autostrada del Sole. This is connected to the restoration works, particularly surface cleaning, regularly performed for the maintenance of the building. Moreover, the results obtained demonstrated the correlation between the location of the building and the composition of the damage layer: Centennial Hall is mainly undergoing to the impact of pollutants emitted from the close coal power stations, whilst Casa Galleria Vichi is principally affected by pollutants from vehicular exhaust in front of the building.
Resumo:
The present PhD thesis was focused on the development and application of chemical methodology (Py-GC-MS) and data-processing method by multivariate data analysis (chemometrics). The chromatographic and mass spectrometric data obtained with this technique are particularly suitable to be interpreted by chemometric methods such as PCA (Principal Component Analysis) as regards data exploration and SIMCA (Soft Independent Models of Class Analogy) for the classification. As a first approach, some issues related to the field of cultural heritage were discussed with a particular attention to the differentiation of binders used in pictorial field. A marker of egg tempera the phosphoric acid esterified, a pyrolysis product of lecithin, was determined using HMDS (hexamethyldisilazane) rather than the TMAH (tetramethylammonium hydroxide) as a derivatizing reagent. The validity of analytical pyrolysis as tool to characterize and classify different types of bacteria was verified. The FAMEs chromatographic profiles represent an important tool for the bacterial identification. Because of the complexity of the chromatograms, it was possible to characterize the bacteria only according to their genus, while the differentiation at the species level has been achieved by means of chemometric analysis. To perform this study, normalized areas peaks relevant to fatty acids were taken into account. Chemometric methods were applied to experimental datasets. The obtained results demonstrate the effectiveness of analytical pyrolysis and chemometric analysis for the rapid characterization of bacterial species. Application to a samples of bacterial (Pseudomonas Mendocina), fungal (Pleorotus ostreatus) and mixed- biofilms was also performed. A comparison with the chromatographic profiles established the possibility to: • Differentiate the bacterial and fungal biofilms according to the (FAMEs) profile. • Characterize the fungal biofilm by means the typical pattern of pyrolytic fragments derived from saccharides present in the cell wall. • Individuate the markers of bacterial and fungal biofilm in the same mixed-biofilm sample.
Resumo:
Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.
Resumo:
In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.
Resumo:
Systemic risk is the protagonist of the recent financial crisis. This thesis proposes a definition and a propagation mechanism for systemic risk. Risk management has a direct linkage with capital management, when addressing the question that the risk handled by a financial institution is compatible with the amount of equity available. This thesis proposes a risk management of liquid market variables, which compose the assets of a bank, based on the statistical tool of PCA. The principal component analysis will define the PCR, or Principal Components of Risk. Such definition of Risk will be adopted to test if the risk represented by PCR is explanatory of the movements of equity and/or debt for the banks included in the in the index Itraxx financial senior: the results of these regressions will be compared with a formal Capital Adequacy test in order to assess the financial soundness of the main financial European institutions.