970 resultados para Organochlorine pesticide
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Bees have a crucial role in pollination; therefore, it is important to determine the causes of their recent decline. Fipronil and imidacloprid are insecticides used worldwide to eliminate or control insect pests. Because they are broad-spectrum insecticides, they can also affect honeybees. Many researchers have studied the lethal and sublethal effects of these and other insecticides on honeybees, and some of these studies have demonstrated a correlation between the insecticides and colony collapse disorder in bees. The authors investigated the effects of fipronil and imidacloprid on the bioenergetic functioning of mitochondria isolated from the heads and thoraces of Africanized honeybees. Fipronil caused dose-dependent inhibition of adenosine 5'-diphosphate-stimulated (state 3) respiration in mitochondria energized by either pyruvate or succinate, albeit with different potentials, in thoracic mitochondria; inhibition was strongest when respiring with complex I substrate. Fipronil affected adenosine 5'-triphosphate (ATP) production in a dose-dependent manner in both tissues and substrates, though with different sensitivities. Imidacloprid also affected state-3 respiration in both the thorax and head, being more potent in head pyruvate-energized mitochondria; it also inhibited ATP production. Fipronil and imidacloprid had no effect on mitochondrial state-4 respiration. The authors concluded that fipronil and imidacloprid are inhibitors of mitochondrial bioenergetics, resulting in depleted ATP. This action can explain the toxicity of these compounds to honeybees. (c) 2014 SETAC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For the first time, regulatory protocols defined in the OECD guidelines were applied to determine the fate properties of a nanopesticide in two agricultural soils with contrasting characteristics. The nanoformulation studied had no effect on the degradation kinetics of atrazine indicating that (1) the release of atrazine from the polymer nanocarriers occurred rapidly relative to the degradation kinetics (half-lives 36-53 days) and/or that (2) atrazine associated with the nanocarriers was subject to biotic or abiotic degradation. Sorption coefficients, derived from a batch and a centrifugation technique at a realistic soil-to-solution ratio, were higher for the nanoformulated atrazine than for the pure active ingredient. Results indicate that the nanoformulation had an effect on the fate of atrazine. However, since the protocols applied were designed to assess solutes, conclusions about the transport of atrazine loaded onto the nanocarriers should be made extremely cautiously. The centrifugation method applied over time (here over 7 days) appears to be a useful tool to indirectly assess the durability of nanopesticides under realistic soil-to-solution ratios and estimate the period of time during which an influence on the fate of the active ingredient may be expected. More detailed investigations into the bioavailability and durability of nanopesticides are necessary and will require the development of novel methods suitable to address both the "nano" and "organic" characteristics of polymer-based nanopesticides.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Noise-induced hearing loss has been studied for many years and today many experts also investigate the synergic action of chemical products, since they can be potentially ototoxic. AIM: to investigate the audiological findings in workers exposed to occupational noise and pesticide and to compare it to data from noise-exposed workers. STUDY DESIGN: Clinical retrospective. MATERIAL AND METHOD: individuals that had been exposed to pesticide and noise (group I), and individuals that had been exposed to noise only (group II). RESULTS: The classification of the audiometric findings showed in that group I: 35% had normal hearing thresholds, 53.75% had degree 1 hearing loss and 11.25% had degree 2 hearing loss; and group II had 57.5% of normal hearing, 40% had degree 1 hearing loss and only 2.5% had degree 2 hearing loss. The analysis of the audiometric findings also showed a significant worsening after comparing groups I and II thresholds, in the frequency of 3 kHz on the left ear and 4 kHz on both ears. CONCLUSION: The analysis showed that group I had worse audiometric thresholds compared to group II.
Resumo:
Compounds released into the environment can induce genetic alterations in living organisms. A group of chemicals that shows proven toxicity is the pesticides, and the insecticides are the most harmful. The insecticides of the family phenylpyrazole have wide application both in agriculture and in homes. Fipronil, an insecticide of this chemical group, is widely used in various cultures and in homes, mainly for fighting fleas and ticks on dogs and cats. The use of fipronil may represent a risk to man and the environmental health, since this pesticide can potentially induce cell death, regardless of cell type. Fipronil, when in contact with the environment, can undergo various degradation processes, including photodegradation. The toxic effect of one of its metabolites derived from photodegradation, sulfone-fipronil, is approximately 20 fold as great as fipronil itself. The A. cepa test system was used to evaluate cytotoxic, genotoxicity and mutagenic effects of fipronil before and after phptodegradation. Seeds of Allium cepa were subjected to solutions of fipronil, pre-exposed or not exposed to degradation by sunlight. The germination tests were conducted both under the effect of light and in the dark. We evaluated the cumulative potential of this insecticide using 48 and 72-hours recovery tests. The results showed that when fipronil was previously exposed to the sun, it presented a greater genotoxic and mutagenic potential, showing that the metabolites formed by photodegradation can show more harmfull effects
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Indiscriminate and inappropriate use of pesticides in agriculture has been pointed out for increasing health problems and environmental damage. Considering that water resources are the principal destiny of those compounds after application, the present study presents optimization and validation of two simple and effi cient analytical methods for pesticides quantifi cation in both surface and groundwater. Were selected the pesticides more commonly used at Dourados (MS - Brazil), region with intense agricultural activity. Pesticides were preconcentrated by solid-phase extraction using C18 (500 mg) cartridges and then divided in two groups for elution and quantifi cation: 2.4-D and 2.4-DCP were eluted with methanol and quantifi ed by high performance liquid chromatography with ultra-violet detector (HPLC-UV) while atrazine, DIA, DEA, trifl uralin and methyl parathion were eluted with ethylacetate (1:1, v/v) and quantifi ed by gas chromatography with thermionic specifi c detector (GC-TSD). The methods showed satisfactory accuracy (76-107%) and precision (<12%) for the substances analyzed at the fortifi ed levels selected for the study, except for DIA (<51%). Study of pesticide stability also presented good results: C18 cartridges could be stored for at least for 21 days at -20ºC with no signs of the compounds degradability. Both methods limits of quantifi cation of the pesticides (0.22 - 0.48 μg L-1) are in accordance to the levels currently established by the Brazilian national legislation for pesticides in water. Although only the pesticide 2.4-D has been detected in two distinct collection points in the study period of time, this work warns for the requirement of systematical analysis of pesticides presence in water destined to human consume, principally in areas of intense agriculture activity. Such monitoring can provide subsidies for public environmental policies.