974 resultados para Non-linear Dynamics
Resumo:
The vast territories that have been radioactively contaminated during the 1986 Chernobyl accident provide a substantial data set of radioactive monitoring data, which can be used for the verification and testing of the different spatial estimation (prediction) methods involved in risk assessment studies. Using the Chernobyl data set for such a purpose is motivated by its heterogeneous spatial structure (the data are characterized by large-scale correlations, short-scale variability, spotty features, etc.). The present work is concerned with the application of the Bayesian Maximum Entropy (BME) method to estimate the extent and the magnitude of the radioactive soil contamination by 137Cs due to the Chernobyl fallout. The powerful BME method allows rigorous incorporation of a wide variety of knowledge bases into the spatial estimation procedure leading to informative contamination maps. Exact measurements (?hard? data) are combined with secondary information on local uncertainties (treated as ?soft? data) to generate science-based uncertainty assessment of soil contamination estimates at unsampled locations. BME describes uncertainty in terms of the posterior probability distributions generated across space, whereas no assumption about the underlying distribution is made and non-linear estimators are automatically incorporated. Traditional estimation variances based on the assumption of an underlying Gaussian distribution (analogous, e.g., to the kriging variance) can be derived as a special case of the BME uncertainty analysis. The BME estimates obtained using hard and soft data are compared with the BME estimates obtained using only hard data. The comparison involves both the accuracy of the estimation maps using the exact data and the assessment of the associated uncertainty using repeated measurements. Furthermore, a comparison of the spatial estimation accuracy obtained by the two methods was carried out using a validation data set of hard data. Finally, a separate uncertainty analysis was conducted that evaluated the ability of the posterior probabilities to reproduce the distribution of the raw repeated measurements available in certain populated sites. The analysis provides an illustration of the improvement in mapping accuracy obtained by adding soft data to the existing hard data and, in general, demonstrates that the BME method performs well both in terms of estimation accuracy as well as in terms estimation error assessment, which are both useful features for the Chernobyl fallout study.
Resumo:
Introduction: Imatinib, a first-line drug for chronic myeloid leukaemia (CML), has been increasingly proposed for therapeutic drug monitoring (TDM), as trough concentrations >=1000 ng/ml (Cmin) have been associated with improved molecular and complete cytogenetic response (CCyR). The pharmacological monitoring project of EUTOS (European Treatment and Outcome Study) was launched to validate retrospectively the correlation between Cmin and response in a large population of patients followed by central TDM in Bordeaux.¦Methods: 1898 CML patients with first TDM 0-9 years after imatinib initiation, providing cytogenetic data along with demographic and comedication (37%) information, were included. Individual Cmin, estimated by non-linear regression (NONMEM), was adjusted to initial standard dose (400 mg/day) and stratified at 1000 ng/ml. Kaplan-Meier estimates of overall cumulative CCyR rates (stratified by sex, age, comedication and Cmin) were compared using asymptotic logrank k-sample test for interval-censored data. Differences in Cmin were assessed by Wilcoxon test.¦Results: There were no significant differences in overall cumulative CCyR rates between Cmin strata, sex and comedication with P-glycoprotein inhibitors/inducers or CYP3A4 inhibitors (p >0.05). Lower rates were observed in 113 young patients <30 years (p = 0.037; 1-year rates: 43% vs 60% in older patients), as well as in 29 patients with CYP3A4 inducers (p = 0.001, 1-year rates: 40% vs 66% without). Higher rates were observed in 108 patients on organic-cation-transporter-1 (hOCT-1) inhibitors (p = 0.034, 1-year rates: 83% vs 56% without). Considering 1-year CCyR rates, a trend towards better response for Cmin above 1000 ng/ml was observed: 64% (95%CI: 60-69%) vs 59% (95%CI: 56-61%). Median Cmin (400 mg/day) was significantly reduced in male patients (732 vs 899ng/ml, p <0.001), young patients <30 years (734 vs 802 ng/ml, p = 0.037) and under CYP3A4 inducers (758 vs 859 ng/ml, p = 0.022). Under hOCT-1 inhibitors, Cmin was increased (939 vs 827 ng/ml, p = 0.038).¦Conclusion: Based on observational TDM data, the impact of imatinib Cmin >1000 ng/ml on CCyR was not salient. Young CML patients (<30 years) and patients taking CYP3A4 inducers probably need close monitoring and possibly higher imatinib doses, due to lower Cmin along with lower CCyR rates. Patients taking hOCT-1 inhibitors seem in contrast to have improved CCyR response rates. The precise role for imatinib TDM remains to be established prospectively.
Resumo:
Comprehensive approach study aimed understanding the reflections and contrasts between personal time and medical therapy protocol time in the life of a young woman with breast cancer. Addressed as a situational study and grounded in Beth’s life story about getting sick and dying of cancer at age 34, the study’s data collection process employed interviews, observation and medical record analysis. The construction of the analytic-synthetic box based on the chronology of Beth’s clinical progression, treatment phases and temporal perception of occurrences enabled us to point out a linear medical therapy protocol time identified by the diagnosis and treatment sequencing process. On the other hand, Beth’s experienced time was marked by simultaneous and non-linear events that generated suffering resulting from the disease. Such comprehension highlights the need for healthcare professionals to take into account the time experienced by the patient, thus providing an indispensable cancer therapeutic protocol with a personal character.
Resumo:
We discuss some practical issues related to the use of the Parameterized Expectations Approach (PEA) for solving non-linear stochastic dynamic models with rational expectations. This approach has been applied in models of macroeconomics, financial economics, economic growth, contracttheory, etc. It turns out to be a convenient algorithm, especially when there is a large number of state variables and stochastic shocks in the conditional expectations. We discuss some practical issues having to do with the application of the algorithm, and we discuss a Fortran program for implementing the algorithm that is available through the internet.We discuss these issues in a battery of six examples.
Resumo:
In this paper, we study how access pricing affects network competition when subscription demand is elastic and each network uses non-linear prices and can applytermination-based price discrimination. In the case of a fixed per minute terminationcharge, we find that a reduction of the termination charge below cost has two opposing effects: it softens competition but helps to internalize network externalities. Theformer reduces mobile penetration while the latter boosts it. We find that firms always prefer termination charge below cost for either motive while the regulator preferstermination below cost only when this boosts penetration.Next, we consider the retail benchmarking approach (Jeon and Hurkens, 2008)that determines termination charges as a function of retail prices and show that thisapproach allows the regulator to increase penetration without distorting call volumes.
Resumo:
This paper provides a method to estimate time varying coefficients structuralVARs which are non-recursive and potentially overidentified. The procedureallows for linear and non-linear restrictions on the parameters, maintainsthe multi-move structure of standard algorithms and can be used toestimate structural models with different identification restrictions. We studythe transmission of monetary policy shocks and compare the results with thoseobtained with traditional methods.
Resumo:
In order to have references for discussing mathematical menus in political science, Ireview the most common types of mathematical formulae used in physics andchemistry, as well as some mathematical advances in economics. Several issues appearrelevant: variables should be well defined and measurable; the relationships betweenvariables may be non-linear; the direction of causality should be clearly identified andnot assumed on a priori grounds. On these bases, theoretically-driven equations onpolitical matters can be validated by empirical tests and can predict observablephenomena.
Resumo:
This study explored the links between having older siblings who get drunk, satisfaction with the parent-adolescent relationship, parental monitoring, and adolescents' risky drinking. Regression models were conducted based on a national representative sample of 3725 8th to 10th graders in Switzerland (mean age 15.0, SD = .93) who indicated having older siblings. Results showed that both parental factors and older siblings' drinking behaviour shape younger siblings' frequency of risky drinking. Parental monitoring showed a linear dose-response relationship, and siblings' influence had an additive effect. There was a non-linear interaction effect between parent-adolescent relationship and older sibling's drunkenness. The findings suggest that, apart from avoiding an increasingly unsatisfactory relationship with their children, parental monitoring appears to be important in preventing risky drinking by their younger children, even if the older sibling drinks in such a way. However, a satisfying relationship with parents does not seem to be sufficient to counterbalance older siblings' influence.
Resumo:
This paper presents a comparative analysis of linear and mixed modelsfor short term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay.The series is interpolated with a linear predictor which minimizes theforecast mean square error. The linear models are seasonal ARIMA models and themixed models have a linear component and a non linear seasonal component.The non linear component is estimated by a non parametric regression of dataversus time. Short term forecasts, no more than two days ahead, are of interestbecause they can be used by the port authorities to notice the fleet.Several models are fitted and compared by their forecasting behavior.
Resumo:
Context There are no evidence syntheses available to guide clinicians on when to titrate antihypertensive medication after initiation. Objective To model the blood pressure (BP) response after initiating antihypertensive medication. Data sources electronic databases including Medline, Embase, Cochrane Register and reference lists up to December 2009. Study selection Trials that initiated antihypertensive medication as single therapy in hypertensive patients who were either drug naive or had a placebo washout from previous drugs. Data extraction Office BP measurements at a minimum of two weekly intervals for a minimum of 4 weeks. An asymptotic approach model of BP response was assumed and non-linear mixed effects modelling used to calculate model parameters. Results and conclusions Eighteen trials that recruited 4168 patients met inclusion criteria. The time to reach 50% of the maximum estimated BP lowering effect was 1 week (systolic 0.91 weeks, 95% CI 0.74 to 1.10; diastolic 0.95, 0.75 to 1.15). Models incorporating drug class as a source of variability did not improve fit of the data. Incorporating the presence of a titration schedule improved model fit for both systolic and diastolic pressure. Titration increased both the predicted maximum effect and the time taken to reach 50% of the maximum (systolic 1.2 vs 0.7 weeks; diastolic 1.4 vs 0.7 weeks). Conclusions Estimates of the maximum efficacy of antihypertensive agents can be made early after starting therapy. This knowledge will guide clinicians in deciding when a newly started antihypertensive agent is likely to be effective or not at controlling BP.
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
Site-specific regression coefficient values are essential for erosion prediction with empirical models. With the objective to investigate the surface-soilconsolidation factor, Cf, linked to the RUSLE's prior-land-use subfactor, PLU, an erosion experiment using simulated rainfall on a 0.075 m m-1 slope, sandy loam Paleudult soil, was conducted at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul (EEA/UFRGS), in Eldorado do Sul, State of Rio Grande do Sul, Brazil. Firstly, a row-cropped area was excluded from cultivation (March 1995), the existing crop residue removed from the field, and the soil kept clean-tilled the rest of the year (to get a degraded soil condition for the intended purpose of this research). The soil was then conventional-tilled for the last time (except for a standard plot which was kept continuously cleantilled for comparison purposes), in January 1996, and the following treatments were established and evaluated for soil reconsolidation and soil erosion until May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) fresh-tilled soil, continuously in clean-tilled fallow (unit plot); (b) reconsolidating soil without cultivation; and (c) reconsolidating soil with cultivation (a crop sequence of three corn- and two black oats cycles, continuously in no-till, removing the crop residues after each harvest for rainfall application and redistributing them on the site after that). Simulated rainfall was applied with a Swanson's type, rotating-boom rainfall simulator, at 63.5 mm h-1 intensity and 90 min duration, six times during the two-and-half years of experimental period (at the beginning of the study and after each crop harvest, with the soil in the unit plot being retilled before each rainfall test). The soil-surface-consolidation factor, Cf, was calculated by dividing soil loss values from the reconsolidating soil treatments by the average value from the fresh-tilled soil treatment (unit plot). Non-linear regression was used to fit the Cf = e b.t model through the calculated Cf-data, where t is time in days since last tillage. Values for b were -0.0020 for the reconsolidating soil without cultivation and -0.0031 for the one with cultivation, yielding Cf-values equal to 0.16 and 0.06, respectively, after two-and-half years of tillage discontinuation, compared to 1.0 for fresh-tilled soil. These estimated Cf-values correspond, respectively, to soil loss reductions of 84 and 94 %, in relation to soil loss from the fresh-tilled soil, showing that the soil surface reconsolidated intenser with cultivation than without it. Two distinct treatmentinherent soil surface conditions probably influenced the rapid decay-rate of Cf values in this study, but, as a matter of a fact, they were part of the real environmental field conditions. Cf-factor curves presented in this paper are therefore useful for predicting erosion with RUSLE, but their application is restricted to situations where both soil type and particular soil surface condition are similar to the ones investigate in this study.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
Introduction: The SMILING project, a multicentric project fundedby the European Union, aims to develop a new gait and balance trainingprogram to prevent falls in older persons. The program includes the"SMILING shoe", an innovative device that generates mechanical perturbationwhile walking by changing the soles' inclination. Induced perturbationschallenge subjects' balance and force them to react to avoidfalls. By training specifically the complex motor reactions used to maintainbalance when walking on irregular ground, the program will improvesubjects' ability to react in situation of unsteadiness and reduce theirrisk of falling. Methods: The program will be evaluated in a multicentric,cross-over randomized controlled trial. Overall, 112 subjects (aged≥65 years, ≥1 falls, POMA score 22-26/28) will be enrolled. Subjectswill be randomised in 2 groups: group A begin the training with active"SMILING shoes", group B with inactive dummy shoes. After 4 weeksof training, group A and B will exchange the shoes. Supervised trainingsessions (30 minutes twice a week for 8 weeks) include walkingtasks of progressive difficulties.To avoid a learning effect, "SMILINGshoes" perturbations will be generated in a non-linear and chaotic way.Gait performance, fear of falling, and acceptability of the program willbe assessed. Conclusion: The SMILING program is an innovative interventionfor falls prevention in older persons based on gait and balancetraining using chaotic perturbations. Because of the easy use of the"SMILING shoes", this program could be used in various settings, suchas geriatric clinics or at home.
Resumo:
BACKGROUND: The aim of this study was to assess the pharmacology, toxicity and activity of high-dose ifosfamide mesna +/- GM-CSF administered by a five-day continuous infusion at a total ifosfamide dose of 12-18 g/m2 in adult patients with advanced sarcomas. PATIENTS AND METHODS: Between January 1991 and October 1992 32 patients with advanced or metastatic sarcoma were entered the study. Twenty-seven patients were pretreated including twenty-three with prior ifosfamide at less than 8 g/m2 total dose/cycle. In 25 patients (27 cycles) extensive pharmacokinetic analyses were performed. RESULTS: The area under the plasma concentration-time curve (AUC) for ifosfamide increased linearly with dose while the AUC's of the metabolites measured in plasma by thin-layer chromatography did not increase with dose, particularly that of the active metabolite isophosphoramide mustard. Furthermore the AUC of the inactive carboxymetabolite did not increase with dose. Interpatient variability of pharmacokinetic parameters was high. Dose-limiting toxicity was myelosuppression at 18 g/m2 total dose with grade 4 neutropenia in five of six patients and grade 4 thrombocytopenia in four of six patients. Therefore the maximum tolerated dose was considered to be 18 g/m2 total dose. There was one CR and eleven PR in twenty-nine evaluable patients (overall response rate 41%). CONCLUSION: Both the activation and inactivation pathways of ifosfamide are non-linear and saturable at high-doses although the pharmacokinetics of the parent drug itself are dose linear. Ifosfamide doses greater than 14-16 g/m2 per cycle appear to result in a relative decrease of the active metabolite isophosphoramide mustard. These data suggest a dose-dependent saturation or even inhibition of ifosfamide metabolism by increasing high dose ifosfamide and suggest the need for further metabolic studies.