898 resultados para Multiple subspace learning
Resumo:
Informal Learning plays an important role in everyone's life and yet we often are unaware of it. The need to keep track of the knowledge acquired through informal learning is increasing as its sources become increasingly diverse. This paper presents a study on a tool developed to help keeping track of learners' informal learning, both within academic and professional contexts, This tool, developed within the European Commission funded TRAILER project, will further integrate the improvements suggested by users during the piloting phase. The two studied contexts were similar regarding the importance and perception of Informal Learning, but differed concerning tool usage. The overall idea of managing one's informal learning was well accepted and welcomed, which validated the emerging need for a tool with this purpose.
Resumo:
According to recent studies, informal learning accounts for more than 75% of our continuous learning through life. However, the awareness of this learning, its benefits and its potential is still not very clear. In engineering contexts, informal learning could play an invaluable role helping students or employees to engage with peers and also with more experience colleagues, exchanging ideas and discussing problems. This work presents an initial set of results of the piloting phase of a project (TRAILER) where an innovative service based on Information & Communication Technologies was developed in order to aid the collection and visibility of informal learning. This set of results concerns engineering contexts (academic and business), from the learners' perspective. The major idea that emerged from these piloting trials was that it represented a good way of collecting, recording and sharing informal learning that otherwise could easily be forgotten. Several benefits were reported between the two communities such as being helpful in managing competences and human resources within an institution.
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.
Resumo:
Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos implica uma forte componente de investigação em áreas como a visão por computador e a aprendizagem computacional. O reconhecimento gestual é uma área com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e mais simples de comunicar com sistemas baseados em computador, sem a necessidade de utilização de dispositivos extras. Assim, o objectivo principal da investigação na área de reconhecimento de gestos aplicada à interacção homemmáquina é o da criação de sistemas, que possam identificar gestos específicos e usálos para transmitir informações ou para controlar dispositivos. Para isso as interfaces baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão são capazes de trabalhar com soluções específicas, construídos para resolver um determinado problema e configurados para trabalhar de uma forma particular. Este projeto de investigação estudou e implementou soluções, suficientemente genéricas, com o recurso a algoritmos de aprendizagem computacional, permitindo a sua aplicação num conjunto alargado de sistemas de interface homem-máquina, para reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning Module Architecture (GeLMA), permite de forma simples definir um conjunto de comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser facilmente integrado e configurado para ser utilizado numa série de aplicações. É um sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído unicamente com bibliotecas de código. As experiências realizadas permitiram mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de gestos dinâmicos. Para validar a solução proposta, foram implementados dois sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um sistema de reconhecimento de gestos baseada em visão com a definição de uma linguagem formal, o CommLang Referee, à qual demos a designação de Referee Command Language Interface System (ReCLIS). O sistema identifica os comandos baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro, sendo este posteriormente enviado para um interface de computador que transmite a respectiva informação para os robôs. O segundo é um sistema em tempo real capaz de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de forma fiável. Embora a solução implementada apenas tenha sido treinada para reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de interação baseados em visão pode ser a mesma para todas as aplicações e, deste modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser suficientemente genérica e uma base sólida para o desenvolvimento de sistemas baseados em reconhecimento gestual que podem ser facilmente integrados com qualquer aplicação de interface homem-máquina. A linguagem formal de definição da interface pode ser redefinida e o sistema pode ser facilmente configurado e treinado com um conjunto de gestos diferentes de forma a serem integrados na solução final.
Resumo:
Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.
Resumo:
Informal Learning is present in everyone's life but its awareness only recently has been reported. The need to keep track of the knowledge acquired this way is increasing as its sources diversity also increases. This work presents the pilots trials on the use of a tool developed to help keeping track of the learners’ informal learning, within a number of companies spread out in three countries. This tool developed through the European Commission funded project TRAILER, is still under development, which will allow integrating the set of improving suggestions obtained from users during the piloting phase. The overall idea of managing one’s informal learning was well accepted and welcomed, which validated the emerging need for a tool with this purpose.
Resumo:
Informal learning is becoming more and more important: Nowadays people learn more this way, through the Internet, than in schools or normal trainings. But they don’t get any certificateswhich attest this fact. So they can't show the employer or teacher etc. that they have learned something. TRAILER project aim is to solve this problem by developing a special tool for managing of all competences and skills acquired through informal learning experiences. Both from the perspective of the user and the perspective of an institution or a company. We’ll present the IT tool to show how people can make their informal learning outcomes visible. TRAILER helps users to gather all information about process and outcomes of their informal learning. Users can share this with friends, colleagues or their employees, teachers and so on. They can create an interactive e-portfolio which can be attached to their CV, cover letter or Knowledge Management system etc. After the presentation of the tool we will discuss possible areas and fields to use this tool. Also we would like to discuss all possible use of the tool by the participants and another needs in this area. Moreover we want to discuss other problems in informal learning process, ways to solve the problems and discuss other ideas of different IT tools which could help in informal learning process. During the discussion we’ll use an interactive respond system which can be used on mobile devices: it makes possible for participants to share their opinions individually before knowing another persons' opinion.
Resumo:
People do not learn only in formal educational institutions, but also throughout their lives, from their experiences, conversations, observations of others, exploration of the Internet, meetings and conferences, and chance encounters etc. However this informal and non-formal learning can easily remain largely invisible, making it hard for peers and employers to recognize or act upon it. The TRAILER project aims to make this learning visible so that it can benefit both the individual and the organization. The proposed demonstration will show a software solution that (i) helps the learners to capture, organize and classify a wide range of ’informal’ learning taking place in their lives, and (ii) assists the organization in recognizing this learning and use it to help managing human resources (benefiting both parts). This software tool has recently been used in two phases of pilot studies, which have run in four different European countries.
Resumo:
The evolution of new technology and its increasing use, have for some years been making the existence of informal learning more and more transparent, especially among young and older adults in both Higher Education and workplace contexts. However, the nature of formal and non-formal, course-based, approaches to learning has made it hard to accommodate these informal processes satisfactorily, and although technology bring us near to the solution, it has not yet achieved. TRAILER project aims to address this problem by developing a tool for the management of competences and skills acquired through informal learning experiences, both from the perspective of the user and the institution or company. This paper describes the research and development main lines of this project.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Num sistema de ensino cada vez mais exigente, a experimentação assume um papel fundamental na aquisição e validação do conhecimento. No ensino da Física, a necessidade de compreender a influência do meio num dado conceito teórico leva a que a experimentação tenha um carácter obrigatório. Neste contexto, surgem três cenários capazes de suportar a aprendizagem dos conceitos teóricos adquiridos. A simulação que faz uso da velocidade e capacidades de cálculo do computador para obter o resultado de uma experiência, a experimentação tradicional em laboratório, na qual o aluno executa, presencialmente, a sua experiência e por último a experimentação remota, que permite a execução de uma experiência real sem a presença física do aluno. Esta dissertação apresenta o projeto de um aparato para experimentação remota do “Lançamento de projéteis”. De forma a providenciar um meio de ensino de Física mais flexível, o aparato desenvolvido permite, aos alunos, a determinação da aceleração da gravidade e o estudo da dependência do movimento de um projétil num conjunto de parâmetros. Este aparato, operado remotamente, é acedido via web, onde primeiramente é reservado um intervalo de tempo. O conjunto de parâmetros (“Bola”, “Altura de lançamento” e “Ângulo de lançamento”) da máquina permite suportar vários cenários de ensino da Física, com diferentes complexidades.
Resumo:
Trabalho de projecto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil Gestão de Sistemas Ambientais