925 resultados para Multilevel Systems Model
Resumo:
Process modeling grammars are used to create models of business processes. In this paper, we discuss how different routing symbol designs affect an individual's ability to comprehend process models. We conduct an experiment with 154 students to ascertain which visual design principles influence process model comprehension. Our findings suggest that design principles related to perceptual discriminability and pop out improve comprehension accuracy. Furthermore, semantic transparency and aesthetic design of symbols lower the perceived difficulty of comprehension. Our results inform important principles about notational design of process modeling grammars and the effective use of process modeling in practice.
Resumo:
Optimal Asset Maintenance decisions are imperative for efficient asset management. Decision Support Systems are often used to help asset managers make maintenance decisions, but high quality decision support must be based on sound decision-making principles. For long-lived assets, a successful Asset Maintenance decision-making process must effectively handle multiple time scales. For example, high-level strategic plans are normally made for periods of years, while daily operational decisions may need to be made within a space of mere minutes. When making strategic decisions, one usually has the luxury of time to explore alternatives, whereas routine operational decisions must often be made with no time for contemplation. In this paper, we present an innovative, flexible decision-making process model which distinguishes meta-level decision making, i.e., deciding how to make decisions, from the information gathering and analysis steps required to make the decisions themselves. The new model can accommodate various decision types. Three industrial case studies are given to demonstrate its applicability.
Resumo:
Substantial research efforts have been expended to deal with the complexity of concurrent systems that is inherent to their analysis, e.g., works that tackle the well-known state space explosion problem. Approaches differ in the classes of properties that they are able to suitably check and this is largely a result of the way they balance the trade-off between analysis time and space employed to describe a concurrent system. One interesting class of properties is concerned with behavioral characteristics. These properties are conveniently expressed in terms of computations, or runs, in concurrent systems. This article introduces the theory of untanglings that exploits a particular representation of a collection of runs in a concurrent system. It is shown that a representative untangling of a bounded concurrent system can be constructed that captures all and only the behavior of the system. Representative untanglings strike a unique balance between time and space, yet provide a single model for the convenient extraction of various behavioral properties. Performance measurements in terms of construction time and size of representative untanglings with respect to the original specifications of concurrent systems, conducted on a collection of models from practice, confirm the scalability of the approach. Finally, this article demonstrates practical benefits of using representative untanglings when checking various behavioral properties of concurrent systems.
Resumo:
As business process management technology matures, organisations acquire more and more business process models. The management of the resulting collections of process models poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks in process models and is independent of any particular process modelling notation.
Resumo:
A multicausal model of adolescent homelessness is proposed, based upon the notion that homeless youth suffer from emotional, social, and cultural deprivation. The model was tested in a sample of homeless adolescents (n = 54) and a similar, but not homeless, control group (n = 58). Emotional deprivation was assessed on the Parental Bonding Inventory (Parker, Tupling,&Brown, 1979), whereas social and cultural deprivation were assessed on the Family Environment Scale (Moos&Moos, 1981). The homeless adolescents were found to be significantly more deprived emotionally, socially, and culturally than the controls. The results indicate support for a deprivation model of adolescent homelessness with implications for public policy and intervention planning.
Resumo:
The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
This paper examines the Rural Schools of Queensland. Starting with Nambour in 1917, the scheme incorporated thirty schools, and operated for over forty years. The rhetoric of the day was that boys and girls from the senior classes of primary school would be provided with elementary instruction of a practical character. In reality, the subjects taught were specifically tailored to provide farm skills to children in rural centres engaged in farming, dairying or fruit growing. Linked to each Rural School was a number of smaller surrounding schools, students from which travelled to the Rural School for special agricultural or domestic instruction. Through this action, the Queensland Department of Public Instruction left no doubt it intended to provide educational support for agrarian change and development within the state; in effect, they had set in motion the creation of a Queensland yeoman class. The Department’s intention was to arrest or reverse the trend toward urbanisation — whilst increasing agricultural productivity — through the making of a farmer born of the land and accepting of the new scientific advances in agriculture.
Resumo:
Capacity probability models of generating units are commonly used in many power system reliability studies, at hierarchical level one (HLI). Analytical modelling of a generating system with many units or generating units with many derated states in a system, can result in an extensive number of states in the capacity model. Limitations on available memory and computational time of present computer facilities can pose difficulties for assessment of such systems in many studies. A cluster procedure using the nearest centroid sorting method was used for IEEE-RTS load model. The application proved to be very effective in producing a highly similar model with substantially fewer states. This paper presents an extended application of the clustering method to include capacity probability representation. A series of sensitivity studies are illustrated using IEEE-RTS generating system and load models. The loss of load and energy expectations (LOLE, LOEE), are used as indicators to evaluate the application
Resumo:
This paper present an efficient method using system state sampling technique in Monte Carlo simulation for reliability evaluation of multi-area power systems, at Hierarchical Level One (HLI). System state sampling is one of the common methods used in Monte Carlo simulation. The cpu time and memory requirement can be a problem, using this method. Combination of analytical and Monte Carlo method known as Hybrid method, as presented in this paper, can enhance the efficiency of the solution. Incorporation of load model in this study can be utilised either by sampling or enumeration. Both cases are examined in this paper, by application of the methods on Roy Billinton Test System(RBTS).
Resumo:
Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
Chatrooms, for example Internet Relay Chat, are generally multi-user, multi-channel and multiserver chat-systems which run over the Internet and provide a protocol for real-time text-based conferencing between users all over the world. While a well-trained human observer is able to understand who is chatting with whom, there are no efficient and accurate automated tools to determine the groups of users conversing with each other. A precursor to analysing evolving cyber-social phenomena is to first determine what the conversations are and which groups of chatters are involved in each conversation. We consider this problem in this paper. We propose an algorithm to discover all groups of users that are engaged in conversation. Our algorithms are based on a statistical model of a chatroom that is founded on our experience with real chatrooms. Our approach does not require any semantic analysis of the conversations, rather it is based purely on the statistical information contained in the sequence of posts. We improve the accuracy by applying some graph algorithms to clean the statistical information. We present some experimental results which indicate that one can automatically determine the conversing groups in a chatroom, purely on the basis of statistical analysis.
Resumo:
Educators are faced with many challenging questions in designing an effective curriculum. What prerequisite knowledge do students have before commencing a new subject? At what level of mastery? What is the spread of capabilities between bare-passing students vs. the top performing group? How does the intended learning specification compare to student performance at the end of a subject? In this paper we present a conceptual model that helps in answering some of these questions. It has the following main capabilities: capturing the learning specification in terms of syllabus topics and outcomes; capturing mastery levels to model progression; capturing the minimal vs. aspirational learning design; capturing confidence and reliability metrics for each of these mappings; and finally, comparing and reflecting on the learning specification against actual student performance. We present a web-based implementation of the model, and validate it by mapping the final exams from four programming subjects against the ACM/IEEE CS2013 topics and outcomes, using Bloom's Taxonomy as the mastery scale. We then import the itemised exam grades from 632 students across the four subjects and compare the demonstrated student performance against the expected learning for each of these. Key contributions of this work are the validated conceptual model for capturing and comparing expected learning vs. demonstrated performance, and a web-based implementation of this model, which is made freely available online as a community resource.
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.