941 resultados para Multi-objective linear programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a computer application for wind energy bidding in a day-ahead electricity market to better accommodate the variability of the energy source. The computer application is based in a stochastic linear mathematical programming problem. The goal is to obtain the optimal bidding strategy in order to maximize the revenue. Electricity prices and financial penalties for shortfall or surplus energy deliver are modeled. Finally, conclusions are drawn from an illustrative case study, using data from the day-ahead electricity market of the Iberian Peninsula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O aumento da pressão sobre os recursos hídricos tem levado muitos países a reconsiderarem os mecanismos utilizados na indução do uso eficiente da água, especialmente na agricultura irrigada. Estabelecer o preço correto da água é um dos mecanismos de tornar mais eficiente a alocação da água. O presente trabalho tem como objetivo a análise dos impactes económicos, sociais e ambientais de políticas de preço da água. A metodologia utilizada foi a Programação Linear, aplicada ao Perímetro Irrigado do Vale de Caxito, Província do Bengo, a 45 km de Luanda, que tem como fonte o rio Dande. Foram testados três cenários relativos a políticas de tarifação de água: tarifa volumétrica simples, tarifa volumétrica variável, e tarifa fixa por superfície. As principais conclusões mostram que, do ponto de vista do uso eficiente da água na agricultura, os melhores resultados obtêm-se com a tarifa volumétrica variável; do ponto de vista social, a tarifação volumétrica simples apresenta os melhores resultados; o método de tarifa volumétrica variável foi o mais penalizador, reduzindo rapidamente a área das culturas mais consumidoras de água, sendo o melhor do ponto de vista ambiental. Qualquer um dos métodos traz aspetos negativos relativamente à redução da margem bruta total. Palavras-chaves: Recursos hídricos; Preço da água; Programação linear. Abstract: Increased pressure on water resources has led many countries to reconsider the mechanisms used in the induction of efficient water use, especially for irrigated agriculture, a major consumer of water. Establishing the correct price of water is one of the mechanisms for more efficient allocation of water. This paper aims to analyze the economic, social and essenenvironmental impacts of water price policies. The methodology used is the linear programming, applied to the Irrigated Valley Caxito, in Bengo Province, 45 kilometers from Luanda, which has the river Dande as its source. Three scenarios concerning water price policies were tested: simple volumetric rate, variable volumetric rate and flat rate per surface. The main findings show that from the point of view of the efficient use of water in agriculture, the best results are obtained with variable volumetric rate; from the social point of view, the simple volumetric rate has the best results; the volume variable rate method proved to be the most penalizing, quickly reducing the area of most water consuming cultures, being the method in which the environmental objectives would be more readily achieved. Either methods bring negative aspects in relation to the reduction of total gross margin. Key-words: Water resources; Water price; Linear programming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with optimization techniques and modeling of vehicular networks. Thanks to the models realized with the integer linear programming (ILP) and the heuristic ones, it was possible to study the performances in 5G networks for the vehicular. Thanks to Software-defined networking (SDN) and Network functions virtualization (NFV) paradigms it was possible to study the performances of different classes of service, such as the Ultra Reliable Low Latency Communications (URLLC) class and enhanced Mobile BroadBand (eMBB) class, and how the functional split can have positive effects on network resource management. Two different protection techniques have been studied: Shared Path Protection (SPP) and Dedicated Path Protection (DPP). Thanks to these different protections, it is possible to achieve different network reliability requirements, according to the needs of the end user. Finally, thanks to a simulator developed in Python, it was possible to study the dynamic allocation of resources in a 5G metro network. Through different provisioning algorithms and different dynamic resource management techniques, useful results have been obtained for understanding the needs in the vehicular networks that will exploit 5G. Finally, two models are shown for reconfiguring backup resources when using shared resource protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of automotive cybersecurity from the point of view of Threat Analysis and Risk Assessment (TARA). The central question that motivates the thesis is the one about the acceptability of risk, which is vital in taking a decision about the implementation of cybersecurity solutions. For this purpose, we develop a quantitative framework in which we take in input the results of risk assessment and define measures of various facets of a possible risk response; we then exploit the natural presence of trade-offs (cost versus effectiveness) to formulate the problem as a multi-objective optimization. Finally, we develop a stochastic model of the future evolution of the risk factors, by means of Markov chains; we adapt the formulations of the optimization problems to this non-deterministic context. The thesis is the result of a collaboration with the Vehicle Electrification division of Marelli, in particular with the Cybersecurity team based in Bologna; this allowed us to consider a particular instance of the problem, deriving from a real TARA, in order to test both the deterministic and the stochastic framework in a real world application. The collaboration also explains why in the work we often assume the point of view of a tier-1 supplier; however, the analyses performed can be adapted to any other level of the supply chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, electrical machines are seeing an ever-increasing development and extensive research is currently being dedicated to the improvement of their efficiency and torque/power density. Compared to conventional random windings, hairpin winding inherently features lower DC resistance, higher fill factor, better thermal performance, improved reliability, and an automated manufacturing process. However, several challenges need to be addressed, including electromagnetic, thermal, and manufacturing aspects. Of these, the high ohmic losses at high-frequency operations due to skin and proximity effects are the most severe, resulting in low efficiency or high-temperature values. In this work, the hairpin winding challenges were highlighted at high-frequency operations and at showing the limits of applicability of these standard approaches. Afterward, a multi-objective design optimization is proposed aiming to enhance the exploitation of the hairpin technology in electrical machines. Efficiency and volume power density are considered as main design objectives. Subsequently, a changing paradigm is made for the design of electric motors equipped with hairpin windings, where it is proven that a temperature-oriented approach would be beneficial when designing this type of pre-formed winding. Furthermore, the effect of the rotor topology on AC losses is also considered. After providing design recommendations and FE electromagnetic and thermal evaluations, experimental tests are also performed for validation purposes on a motorette wound with pre-formed conductors. The results show that operating the machine at higher temperatures could be beneficial to efficiency, particularly in high-frequency operations where AC losses are higher at low operating temperatures. The last part of the thesis focuses on comparing the main electromagnetic performance metrics for a conventional hairpin winding, wound onto a benchmark stator with a semi-closed slot opening design, and a continuous hairpin winding, in which the slot opening is open. Lastly, the adoption of semi-magnetic slot wedges is investigated to improve the overall performance of the motor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Riding the wave of recent groundbreaking achievements, artificial intelligence (AI) is currently the buzzword on everybody’s lips and, allowing algorithms to learn from historical data, Machine Learning (ML) emerged as its pinnacle. The multitude of algorithms, each with unique strengths and weaknesses, highlights the absence of a universal solution and poses a challenging optimization problem. In response, automated machine learning (AutoML) navigates vast search spaces within minimal time constraints. By lowering entry barriers, AutoML emerged as promising the democratization of AI, yet facing some challenges. In data-centric AI, the discipline of systematically engineering data used to build an AI system, the challenge of configuring data pipelines is rather simple. We devise a methodology for building effective data pre-processing pipelines in supervised learning as well as a data-centric AutoML solution for unsupervised learning. In human-centric AI, many current AutoML tools were not built around the user but rather around algorithmic ideas, raising ethical and social bias concerns. We contribute by deploying AutoML tools aiming at complementing, instead of replacing, human intelligence. In particular, we provide solutions for single-objective and multi-objective optimization and showcase the challenges and potential of novel interfaces featuring large language models. Finally, there are application areas that rely on numerical simulators, often related to earth observations, they tend to be particularly high-impact and address important challenges such as climate change and crop life cycles. We commit to coupling these physical simulators with (Auto)ML solutions towards a physics-aware AI. Specifically, in precision farming, we design a smart irrigation platform that: allows real-time monitoring of soil moisture, predicts future moisture values, and estimates water demand to schedule the irrigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

15th IEEE International Conference on Electronics, Circuits and Systems, Malta

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We derived a framework in integer programming, based on the properties of a linear ordering of the vertices in interval graphs, that acts as an edge completion model for obtaining interval graphs. This model can be applied to problems of sequencing cutting patterns, namely the minimization of open stacks problem (MOSP). By making small modifications in the objective function and using only some of the inequalities, the MOSP model is applied to another pattern sequencing problem that aims to minimize, not only the number of stacks, but also the order spread (the minimization of the stack occupation problem), and the model is tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Mild neurocognitive disorders (MND) affect a subset of HIV+ patients under effective combination antiretroviral therapy (cART). In this study, we used an innovative multi-contrast magnetic resonance imaging (MRI) approach at high-field to assess the presence of micro-structural brain alterations in MND+ patients. METHODS: We enrolled 17 MND+ and 19 MND- patients with undetectable HIV-1 RNA and 19 healthy controls (HC). MRI acquisitions at 3T included: MP2RAGE for T1 relaxation times, Magnetization Transfer (MT), T2* and Susceptibility Weighted Imaging (SWI) to probe micro-structural integrity and iron deposition in the brain. Statistical analysis used permutation-based tests and correction for family-wise error rate. Multiple regression analysis was performed between MRI data and (i) neuropsychological results (ii) HIV infection characteristics. A linear discriminant analysis (LDA) based on MRI data was performed between MND+ and MND- patients and cross-validated with a leave-one-out test. RESULTS: Our data revealed loss of structural integrity and micro-oedema in MND+ compared to HC in the global white and cortical gray matter, as well as in the thalamus and basal ganglia. Multiple regression analysis showed a significant influence of sub-cortical nuclei alterations on the executive index of MND+ patients (p = 0.04 he and R(2) = 95.2). The LDA distinguished MND+ and MND- patients with a classification quality of 73% after cross-validation. CONCLUSION: Our study shows micro-structural brain tissue alterations in MND+ patients under effective therapy and suggests that multi-contrast MRI at high field is a powerful approach to discriminate between HIV+ patients on cART with and without mild neurocognitive deficits.