897 resultados para Molecules - Models - Computer simulation
Resumo:
为工业机器人提出了一种最优学习控制法。这种控制法用加速度误差校正驱动器运动。并提出了一种基于几何级数的极限条件估计学习控制过程收敛条件的理论方法。所提出学习控制法的有效性通过PUMA562机器人的计算机仿真结果得到了证实。
Resumo:
本文为动力学控制工业机器人提出了一种综合学习算法,这种学习算法可将以前所学的信息用于新的控制输入.这种控制方法不需要事先知道机器人动力学,它易于应用于特殊的控制问题或修改以适应实际系统中的变化,控制方法在时间上是有效的,且很适合于定点实现.学习控制算法的有效性通过4自由度的直接驱动机器人前两个关节在重复运动中的计算机仿真实验得到了验证.
Resumo:
本文提出了基于机械臂关节驱动力矩约束方程规划其关节最优运动轨迹的一种有效方法.该方法运用矩阵范数理论简化机械臂的动力学约束方程;在机械臂的关节空间内采用归一化的无因次量运用非线性规划法优化其运动轨迹.将所规划的无因次量轨迹方程作为机械臂产生实际运动轨迹的发生器,通过给定机械臂各运动段的起始和终止关节坐标,由系统的动力学约束方程计算出整个运动段所允许的最短运行时间,即生成所期望的运动轨迹.本文的轨迹规划方法计算效率高,可用于在线轨迹规划,文中通过算例证实了该方法的实用性.
Resumo:
本文为动力学控制工业机器人机械手提出一种综合控制算法。该控制算法,利用小脑模型算术计算机模块模拟机器人机械手的动力学方程并计算实现期望运动所需力矩作为前馈力矩控制项;利用自适应控制器实现反馈控制,以消除由输入扰动和参数变化而引起的机器人机械手运动误差。这种控制方法在时间上是有效的,且很适合于定点实现。控制方法的有效性通过四自由度的直接驱动机器人前两个关节的计算机仿真实验得到验证。
Resumo:
加速度传感器装在机械手手部,各关节的加速度由加速度分解算法得到.然后,提出了一种学习控制法,这种控制法利用加速度误差校正驱动器运动.并提出了一种基于几何级数的极限条件估计学习控制过程收敛条件的理论方法.本文所提出的学习控制理论的有效性通过 PUMA-562 机器人的计算机仿真实验得到了证实.
Resumo:
本文提出了广义预测极点配置前馈自校正控制算法,计算机仿真结果表明,该算法控制质量好,能够消除系统可测扰动对输出的影响。
Resumo:
以整车销售物流为背景,探讨多仓库带时窗约束的车辆路线安排问题的解决方法.提出了更为复杂的基于现实的细节性要求的多配送中心开路VRPTW问题模型,并将遗传算法产生部分解和评估完整解的优化解决方法和涌现交叉算子MX1引入到带时窗的多仓库VRP问题优化中,实现了快速全局优化.提出的开路混合配送方法有利于提高车辆满载率,降低回程空载率.同时实现了运输资源的优化配置,提高车辆利用率.计算机仿真实验证明了算法的可行性.
Resumo:
Geological fluids exist in every geosphere of the Earth and play important roles in many processes of material transformations, energetic interchanges and geochemical interactions. To study the physicochemical properties and geochemical behaviors of geological fluids turn Girt to be one of the challenging issues in geosciences. Compared with conventional approaches of experiments and semi-theoretical modeling, computer simulation on molecular level shows its advantages on quantitative predictions of the physicochemical properties of geological fluids under extreme conditions and emerges as a promising approach to find the characteristics of geological fluids and their interactions in different geospheres of the Earth interior.This dissertation systematically discusses the physicochemical properties of typical geological fluids with state-of-the-art computer simulation techniques. The main results can be summarized as follows: (1) The experimental phase behaviors of the systems CH4-C2H6 and. CO2 have been successfully reproduced with Monte Carlo simulations. (2) Through comprehensive isothermal-isobaric molecular dynamics simulations, the PVT data of water hia^e been extended beyond experimental range to about 2000 K and 20 GPa and an improved equation of state for water has been established. (3) Based on extensive computer simulations, am optimized molecular potential for carbon dioxide have been proposed, this model is expected to predict different properties of carbon dioxide (volumetric properties, phase equilibria, heat of vaporization, structural and dynamical properties) with improved accuracies. (4) On the basis of the above researches of the end-members, a set of parameters for unlike interactions has been proposed by non-linear fitting to the ab initio potential surface of CO2-H2O and is superior to the common used mixing rule and the results of prior workers vs/Ith remarkable accuracies, then a number of simulations of the mixture have been carried out to generate data under high temperatures and pressures as an important complement to the limited experiments. (5) With molecular dynamics simulations, various structural, dynamical and thermodynamical properties of ionic solvations and associations have been oomprehensively analyzed, these results not only agree well with experimental data and first principle calculation results, but also reveal some new insights into the microscopic ionic solvation and association processes.
Resumo:
There is an urgent need for thorough analysis of Radix astragali, a widely used Chinese herb, for quality control purposes. This paper describes the development of a total analytical method for Radix astragali extract, a multi-component complex mixture. Twenty-four components were separated step by step from the extract using a series of isocratic isopropanol-methanol elutions, and then 42 components were separated similarly using methanol-water elutions. Based on the log k(w) and -S of the 66 components obtained from the above procedure and the optimization software developed in our laboratory, an optimum elution program consisting of seven methanol-water segments and four isopropanol-methanol segments was developed to finish the task of analyzing the total components in a single run. Under optimized gradient conditions, the sample of Radix astragali extract was analyzed. As expected, most of the components were well separated and the experimental chromatogram was in a good agreement with the predicted one.
Resumo:
In the present paper a general analytic expression has been obtained and confirmed by a computer simulation which links the surface roughness of an object under study in an emission electron microscope and it's resolution. A quantitative derivation was made for the model case when there is a step on the object surface. It was shown that the resolution is deteriorated asymmetrically relative to the step. The effect sets a practical limit to the ultimate lateral resolution obtainable in an emission electron microscope.
Resumo:
Problem solving is one of the basic processes of human cognition and heuristic strategy is the key to human problem solving, hence, the studies on heuristic strategy is of great importance in cognitive psychology. Current studies on heuristics in problem solving may be summarized as follows: nature and structure of heuristics, problem structure and representation, expert knowledge and expert intuition, nature and role of image, social cognition and social learning. The present study deals with the nature and structure of heuristics. The Solitaire problem was used in our the experiments. Both traditional experimental method and computer simulation were used to study the nature and structure of heuristics. Through a series of experiments, the knowledge of Solitaire problem solving was summed up, its metastrategy is worked out, and then the the metastrategy by computer simulation and experimental verification are tested.
Resumo:
This research uses a multitask, multimodel approach to probe teh problem of risk perception. It consists of three parts. First, the research of risk perception in general social circumstances, the aim is to collect information about the risk perceived by popular; Secondly, the research of risk perception under working circumstances, in the form of questionaire on enterprises; Thirdly, an experimental test of risk cognitive strategies by computer simulation, that is 2x2x3 design of laboratory research based on questionaire.
Resumo:
Evaluation of temperature distribution in cold rooms is an important consideration in the design of food storage solutions. Two common approaches used in both industry and academia to address this question are the deployment of wireless sensors, and modelling with Computational Fluid Dynamics (CFD). However, for a realworld evaluation of temperature distribution in a cold room, both approaches have their limitations. For wireless sensors, it is economically unfeasible to carry out large-scale deployment (to obtain a high resolution of temperature distribution); while with CFD modelling, it is usually not accurate enough to get a reliable result. In this paper, we propose a model-based framework which combines the wireless sensors technique with CFD modelling technique together to achieve a satisfactory trade-off between minimum number of wireless sensors and the accuracy of temperature profile in cold rooms. A case study is presented to demonstrate the usability of the framework.
Resumo:
In the area of food and pharmacy cold storage, temperature distribution is considered as a key factor. Inappropriate distribution of temperature during the cooling process in cold rooms will cause the deterioration of the quality of products and therefore shorten their life-span. In practice, in order to maintain the distribution of temperature at an appropriate level, large amount of electrical energy has to be consumed to cool down the volume of space, based on the reading of a single temperature sensor placed in every cold room. However, it is not clear and visible that what is the change of energy consumption and temperature distribution over time. It lacks of effective tools to visualise such a phenomenon. In this poster, we initially present a solution which combines a visualisation tool with a Computational Fluid Dynamics (CFD) model together to enable users to explore such phenomenon.
Resumo:
info:eu-repo/semantics/published