951 resultados para Microwave hydrothermal synthesis
Resumo:
The term Design is used to describe a wide range of activities. Like the term innovation, it is often used to describe both an activity and an outcome. Many products and services are often described as being designed, as they describe a conscious process of linking form and function. Alternatively, the many and varied processes of design are often used to describe a cost centre of an organisation to demonstrate a particular competency. However design is often not used to describe the ‘value’ it provides to an organisation and more importantly the ‘value’ it provides to both existing and future customers. Design Led Innovation bridges this gap. Design Led Innovation is a process of creating a sustainable competitive advantage, by radically changing the customer value proposition. A conceptual model has been developed to assist organisations apply and embed design in a company’s vision, strategy, culture, leadership and development processes.
Resumo:
Primary aminoporphyrin, secondary bis(porphyrinyl)amine and hydroxyporphyrin complexes have been isolated and characterised both spectroscopically and crystallographically from the reaction of 5-bromo-10,15,20-triphenylporphyrinato-nickel(II) with hydrazine under palladium catalysis.
Resumo:
Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. Current processing technology limits the cost-effective production of levulinic acid in commercial quantities from biomass. The key to improving the yield and effi ciency of levulinic acid production from biomass lies in the ability to optimize and isolate the intermediate products at each step of the reaction pathway and reduce re-polymerization and side reactions. New technologies (including the use of microwave irradiation and ionic liquids) and the development of highly selective catalysts would provide the necessary step change for the optimization of key reactions. A processing environment that allows the use of biphasic systems and/or continuous extraction of products would increase reaction rates, yields and product quality. This review outlines the chemistry of levulinic acid synthesis and discusses current and potential technologies for producing levulinic acid from lignocellulosics.
Resumo:
Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.
Resumo:
Lithium niobate powders from the raw powders of Li2 O5 are directly synthesized by a combustion method with urea fuel. The synthesis parameters (e.g. the calcination temperature, calcination time, and urea-to-(Li2 CO3 + Nb2 O5) quantity ratio) are studied to reveal the optimized synthesis conditions for preparing high-quality lithium niobate powders. In our present work, it is found that a urea-to-(Li2 CO3 + Nb2 O5) ratio close to 3, calcination temperature at 550-600 degrees and reaction time around 2.5h may lead to high-quality lithium niobate powsers. The microstructure of synthesized powders is further studied; a possible mechanism of the involved reactions is also proposed.
Resumo:
A solvothermal route for the preparation of crystalline state lithium niobate using Li2 CO3 and Nb2 O5 is developed. Oxalic acid is employed as solvent, which coordinates with niobium oxide to stimulate the main reaction. Scanning electron microscopy images show that the as-prepared sample displays a cubic morphology. X-ray diffraction and IR spectrum of the as-prepared sample indicate that the sample is well crystalline.
Resumo:
A combustion synthesis of lithium niobate (LN) squares from activated niobium oxide (Nb2 O5.nH2O) and Li2CO3 was studied to understand all the chemical reactions involved, and the nucleation and square-growth mechanisms. It was found that first the lithium ions react with the fuel (urea), then niobium ions of Nb2 O5.nH2O begin a continuous reaction with the fuel to form metal-organic complexes. LN nuclei are formed by the solid-state reaction of Li- and Nb-organic complexes at 430 degrees celcius. Lithium niobate squares are obtained in the crystallization stasge at 700 degrees celcius, which go on the grow into larger squares at 850 degrees celcius because of the agglomeration effect.
Resumo:
An ethylenediamine-assisted route has been designed for one-step synthesis of lithium niobate particles with a novel rodlike structure in an aqueous solution system. The morphological evolution for these lithium niobate rods was monitored via SEM: The raw materials form large lozenges first. These lozenges are a metastable intermediate of this reaction, and they subsequently crack into small rods after sufficiently long time. These small rods recrystallize and finally grow into individual lithium niobate rods. Interestingly, shape-controlled fabrication of lithium niobate powders was achieved through using different amine ligands. For instance, the ethylenediamine or ethanolamine ligan can induce the formation of rods, while n-butylamine prefers to construct hollow spheres. These as-obtained lithium niobate rods and hollow spheres may exhibit enhanced performance in an optical application field due to their distinctive structures. This effective ligand-tuned-morphology route can provide a new strategy to facilely achieve the shape-controlled synthesis of other niobates.
Resumo:
Raman spectroscopy has been used to characterise nine hydrotalcites prepared from aluminate and magnesium solutions (magnesium chloride and seawater). The aluminate hydrotalcites are proposed to have the following formula Mg6Al2(OH)16(CO32-).xH2O, Mg6Al2(OH)16(CO32-,SO42-).xH2O, and Mg6Al2(OH)16(SO42-).xH2O. The synthesis of these hydrotalcites using seawater results in the intercalation of sulfate anions into the hydrotalcite interlayer. The spectra have been used to assess the molecular assembly of the cations and anions in the hydrotalcite structures. The spectra have been conveniently subdivided into spectral features based upon the carbonate anion, the hydroxyl units and water units. This investigation has shown the ideal conditions to form hydrotalcite from aluminate solutions is at pH 14 using magnesium chloride. Changes in synthesis conditions resulted in the formation of impurity products aragonite, thenardite, and gypsum.
Resumo:
Near infrared (NIR), infrared (IR) spectroscopy and X-ray diffraction (XRD) have been applied to halotrichites of the formula FeAl2(SO4)4∙22H2O and Fe2+Fe23+(SO4)4∙22H2O. Comparison of the halotrichites and their starting materials has been used to give a better understanding of the bonding involved in these types of minerals. The vibrational spectroscopy data has shown that Fe2+ oxidises during the formation of halotrichite, no preventative measures were implemented to prevent oxidation, and this has been clearly shown by the position and broadness of electronic bands of transition metals in the NIR spectra (12500 to 7500 cm-1). It is apparent from this region that Fe3+ substitutes for Al3+ in the synthesis of halotrichite. Due to the oxidation of Fe2+ to Fe3+ the halotrichite sample contains a small portion of bilinite. This has been confirmed by XRD, peaks at 9 and 14° 2θ were observed in the halotrichite sample and are identical to the XRD pattern obtained for bilinite. Substitution of aluminium for Fe3+ has resulted in significant changes in the overall infrared and NIR spectral profiles. However, the lower wavenumber regions of the NIR spectra have very similar spectral profiles, which indicate a similar structure to halotrichite has formed for bilinite. This work has shown that iron halotrichites can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
Objective: To quantify the levels of proteoglycan 4 (PRG4) expression by subpopulations of chondrocytes from superficial, middle, and deep layers of normal bovine calf cartilage in various culture systems. Methods: Bovine calf articular cartilage discs or isolated cells were used in I of 3 systems of chondrocyte culture: explant, monolayer, or transplant, for 1-9 days. PRG4 expression was quantified by enzyme-linked immunosorbent assay of spent medium and localized by immunohistochemistry at the articular surface and within chondrocytes in explants and cultured cells. Results: Superficial chondrocytes secreted much more PRG4 than did middle and deep chondrocytes in all cultures. The pattern of PRG4 secretion into superficial culture medium varied with the duration of culture, decreasing with time in explant culture (from similar to25 mug/cm(2)/day on days 0-1 to similar to3 mug/cm(2)/day on days 5-9), while increasing in monolayer culture (from similar to1 pg/cell/day on days 0-1 to similar to7 pg/cell/day on days 7-9) and tending to increase in transplant culture (reaching similar to2 mug/cm(2)/day by days 7-9). In all of the culture systems, inclusion of ascorbic acid stimulated PRG4 secretion, and the source of PRG4 was immunolocalized to superficial cells. Conclusion: The results described here indicate that the phenotype of PRG4 secretion by chondrocytes in culture is generally maintained, in that PRG4 is expressed to a much greater degree by chondrocytes from the superficial zone than by those from the middle and deep zones. The marked up-regulation of PRG4 synthesis by ascorbic acid may have implications for cartilage homeostasis and prevention of osteoarthritic disease. Transplanting specialized cells that secrete PRG4 to a surface may impart functional lubrication and be generally applicable to many tissues in the body.
Resumo:
We have successfully synthesized hydrotalcites (HTs) contg. calcium, which are naturally occurring minerals. Insight into the unique structure of HTs has been obtained using a combination of X-ray diffraction (XRD) as well as IR and Raman spectroscopies. Calcium-contg. hydrotalcites (Ca-HTs) of the formula Ca4Al2(CO3)(OH)12·4H2O (2:1 Ca-HT) to Ca8Al2(CO3)(OH)20· 4H2O (4:1 Ca-HT) have been successfully synthesized and characterised by XRD and Raman spectroscopy. XRD has shown that 3:1 calcium HTs have the largest interlayer distance. Raman spectroscopy complemented with selected IR data has been used to characterize the synthesized Ca-HTs. The Raman bands obsd. at around 1086 and 1077 cm-1 were attributed to the ν1 sym. stretching modes of the (CO32-) units of calcite and carbonate intercalated into the HT interlayer. The corresponding ν3 CO32- antisym. stretching modes are found at around 1410 and 1475 cm-1.
Resumo:
The seawater neutralisation process is currently used in the Alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues, through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralisation method is very similar to the co-precipitation method used to synthesise hydrotalcite (Mg6Al2(OH)16CO3•4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralisation process of Bayer liquor. The Bayer precipitates have been characterised by a variety of techniques, including X-ray diffraction, Raman spectroscopy and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. XRD determined that Bayer hydrotalcites that are synthesised at 55 °C have a larger interlayer distance, indicating more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 °C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.