812 resultados para Metal-cutting
Resumo:
Four new heteroleptic mononuclear complexes, [Cu(PPh3)2L1](1) {L1 = (C9H11O2CS2), [2-(4-methoxyphenyl)ethyl]xanthate}, [Cu(PPh3)2L2] (2) [L2 = (C6H7OCS2), benzylxanthate], [Cu(PPh3)2L3] (3) [L3 = (C5H9OCS2), (cyclobutylmethyl)xanthate] and [Cu(PPh3)2L4] (4) [L4 = (NC13H13NCS2), N-benzyl-N-(4-pyridylmethyl)dithiocarbamate], have been synthesized and characterized by using microanalysis, IR, UV/Vis, 1H, 13C and 31P NMR spectroscopy and X-ray crystallography; their photoluminescent behaviour and molecular electrical conductivity have been investigated. CuI possesses four-coordinate distorted tetrahedral geometry in all the complexes. All are weakly conducting and exhibit semiconductor behaviour in the studied 303363 K temperature range. Complex 4 shows striking luminescent behaviour emitting bluish green light at 480 nm in CH2Cl2 solution at room temperature
Resumo:
New monometallic complex salts of the form X-2[M(L)(2)] [M = Ni2+, X = (CH3)(2)NH2+(1); M = Ni2+, X = (CH3)(4)N+ (2); M = Ni2+, X = (C2H5)(4)N+(3); M = Ni2+, X = (C3H7)(4)N+(4); M = Ni2+; X = (C6H13)(4)N+) (5); M = Pd2+,X = (CH3)(2)NH2+(6); M = Pd2+, X= (C2H5)(4)N+(7); M = Pd2+, X= (C3H7)(4)N+(8); M = Pd2+, X = (C6H13)(4)N+ (9); M = Pt2+, X = (CH3)(2)NH2+(10); L = p-tolylsulfonyldithiocarbimate (CH3C6H4SO2N=CS22 )] have been prepared and characterized by elemental analysis, IR, H-1 and C-13 NMR and UV-Vis spectroscopy; 1, 3, 4 and 5 by X-ray crystallography. In 1, 3, 4 and 5, the Ni atom is four coordinate with a square planar environment being bonded to four sulfur atoms from two bidentate ligands. All the salts are weakly conducting (sigma(rt) = 10 (7) to 10 (14) Scm (1)) because of the lack of significant S center dot center dot center dot S intermolecular interactions between complex anions [M(L)(2)](2) in the solid state however, they show behavior of semiconductors in the temperature range 353-453 K. All the Pd(II) and Pt(II) salts exhibited phtotolumeniscent emissions near visible region in solution at room temperature.
Resumo:
A metal organic framework of Cu-II, tartarate (tar) and 2,2'-bipyridyl (2,2'-bipy)], {[Cu(tar)(2,2'-bipy)]center dot 5H(2)O}(n)} (1) has been synthesized at the mild ambient condition and characterized by single crystal X-ray crystallography. In the compound, the Cu(2,2'-bipy) entities are bridged by tartarate ions which are coordinated to Cu-II by both hydroxyl and monodentate carboxylate oxygen to form a one-dimensional chain. The non-coordinated water molecules form ID water chains by edge-sharing cyclic water pentamers along with dangling water dimers. It shows reversible water expulsion upon heating. The water chains join the ID coordination polymeric chains to a 31) network through hydrogen-bond interactions.
Resumo:
Three novel heteroleptic complexes of the type cis- [ML(dppe)] [M = Ni(II), Pd(II), Pt(II); L = p-tolylsulfonyl dithiocarbimate; dppe = 1,2-bis(diphenylphosphino)ethane] have been prepared and characterized. X-ray crystallography revealed the close proximity of one of the ortho phenyl protons of the dppe ligand to the metal in the Ni(II) complex showing existence of the less common C-H center dot center dot center dot Ni anagostic interactions observed for the first time in the dithio-phosphine mixed-ligand systems. The platinum complex showed a strong photoluminescence emission near visible region in CH(2)Cl(2) solution.
Resumo:
This article describes the synthesis and anion binding properties of a series of ‘picket fence’ metalloporphyrin complexes, within which the metal centre is systematically varied. The porphyrin structure contains four amide bonds and is the same for each metal. The anion binding properties of these receptors are further contrasted with those of their tetraphenylporphyrin congeners to elucidate both the effect of the metal centre and the influence of the amide groups on the anion recognition process. Anion binding was demonstrated using UV/visible and 1H NMR spectroscopies, electrochemistry and luminescence. The metal centre was found to be highly influential in the strength and selectivity of binding; for example, the cadmium and mercury complexes exhibited far greater affinities for anions than the zinc complexes in competitive solvents such as DMSO. The amide functionalities were found to enhance the anion binding process.
Resumo:
A boundary integral equation is described for the prediction of acoustic propagation from a monofrequency coherent line source in a cutting with impedance boundary conditions onto surrounding flat impedance ground. The problem is stated as a boundary value problem for the Helmholtz equation and is subsequently reformulated as a system of boundary integral equations via Green's theorem. It is shown that the integral equation formulation has a unique solution at all wavenumbers. The numerical solution of the coupled boundary integral equations by a simple boundary element method is then described. The convergence of the numerical scheme is demonstrated experimentally. Predictions of A-weighted excess attenuation for a traffic noise spectrum are made illustrating the effects of varying the depth of the cutting and the absorbency of the surrounding ground surface.
Resumo:
1. Bees are one of the most important groups of pollinators in the temperate zone. Although heavy metal pollution is recognised to be a problem affecting large parts of the European Union, we currently lack insights into the effects of heavy metals on wild bee survival and reproduction. 2. We investigated the impact of heavy metal pollution on the wild bee Osmia rufa (Hymenoptera: Megachilidae) by comparing their survival, reproduction and population dynamics along two independent gradients of heavy metal pollution, one in Poland and the other in the United Kingdom. We used trap nests to evaluate the response of fitness and survival parameters of O. rufa. To quantify the levels of pollution, we directly measured the heavy metal concentration in provisions collected by O. rufa. 3. We found that with increasing heavy metal concentration, there was a steady decrease in number of brood cells constructed by females and an increase in the proportion of dead offspring. In the most polluted site, there were typically 3–4 cells per female with 50–60% dead offspring, whereas in unpolluted sites there were 8 to 10 cells per female and only 10–30% dead offspring. Moreover, the bee population growth rate (R0) decreased along the heavy metal pollution gradients. In unpolluted sites, R0 was above 1, whereas in contaminated sites, the values tended to be below 1. 4. Our findings reveal a negative relationship between heavy metal pollution and several fitness parameters of the wild bee O. rufa, and highlight a mechanism whereby the detrimental effects of heavy metal pollution may severely impact wild bee communities.
Resumo:
The new compounds [Ru(R-DAB)(acac)2] (R-DAB = 1,4-diorganyl-
1,4-diazabuta-1,3-diene; R = tert-butyl, 4-methoxyphenyl,
2,6-dimethylphenyl; acac– = 2,4-pentanedionate) exhibit intrachelate ring bond lengths 1.297
Resumo:
A hoard found in Southbroom, Devizes in 1714 contained a group of copper-alloy figurines executed in both classical and local styles and depicting deities belonging to the Graeco-Roman and Gallo-Roman pantheons. The deities in a local style appear to form part of a larger tradition of figurines, predominantly found in the South-West, which are characterised both by a similar artistic style and by the use of Gallo-Roman symbolism and deities, such as the torc, ram-horned snake, carnivorous dog and Sucellus. The unique composition of the hoard in comparison with other hoards of similar date provides insights into the beliefs of Roman Britain.
Resumo:
A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.
Resumo:
Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight. We consider structures with protonated porphyrins and those with the protons exchanged with late 3d metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+), a process that we find to be thermodynamically favorable from aqueous solution for all these metals. Our band structure calculations, based on an accurate screened hybrid functional, reveal that the bandgaps are in a favorable range (2.0 to 2.6 eV) for efficient adsorption of solar light. Furthermore, by approximating the vacuum level to the pore center potential, we provide the alignment of the MOFs’ band edges with the redox potentials for water splitting and carbon dioxide reduction, and show that the structures studied here have band edges positions suitable for these reactions at neutral pH.