949 resultados para Mean-variance.
Resumo:
INTRODUCCIÓN: El 80% de los niños y adolescentes con trastornos del espectro autista (TEA) presenta algún trastorno del sueño, en cuya génesis al parecer intervienen alteraciones en la regulación de la melatonina. El objetivo de este metaanálisis fue determinar la eficacia y seguridad de la melatonina para el manejo de ciertos trastornos del sueño en niños con TEA. MÉTODOS: Tres revisores extrajeron los datos relevantes de los ensayos clínicos aleatorizados doble ciego de alta calidad publicados en bases de datos primarias, de ensayos clínicos, de revisiones sistemáticas y de literatura gris; además se realizó búsqueda en bola de nieve. Se analizaron los datos con RevMan 5.3. Se realizó un análisis del inverso de la varianza por un modelo de efectos aleatorios para las diferencias de medias de los desenlaces propuestos: duración del tiempo total, latencia de sueño y número de despertares nocturnos. Se evaluó la heterogeneidad interestudios con el parámetro I2 RESULTADOS: La búsqueda inicial arrojó 355 resultados, de los cuales tres cumplieron los criterios de selección. La melatonina resultó ser un medicamento seguro y eficaz para aumentar la duración total del sueño y disminuir la latencia de sueño en niños y adolescentes con TEA; hasta el momento la evidencia sobre el número de despertares nocturnos no es estadísticamente significativa. DISCUSIÓN: A la luz de la evidencia disponible, la melatonina es una elección segura y eficaz para el manejo de ciertos problemas del sueño en niños y adolescentes con TEA. Es necesario realizar estudios con mayores tamaños muestrales y comparados con otros medicamentos disponibles en el mercado.
Resumo:
This paper investigates the effect of varying presentation (click) rates in variance ratios for auditory brainstem responses (ABR).
Resumo:
To identify the causes of population decline in migratory birds, researchers must determine the relative influence of environmental changes on population dynamics while the birds are on breeding grounds, wintering grounds, and en route between the two. This is problematic when the wintering areas of specific populations are unknown. Here, we first identified the putative wintering areas of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) populations breeding in northern Italy as those areas, within the wintering ranges of these species, where the winter Normalized Difference Vegetation Index (NDVI), which may affect winter survival, best predicted annual variation in population indices observed in the breeding grounds in 1992–2009. In these analyses, we controlled for the potentially confounding effects of rainfall in the breeding grounds during the previous year, which may affect reproductive success; the North Atlantic Oscillation Index (NAO), which may account for climatic conditions faced by birds during migration; and the linear and squared term of year, which account for nonlinear population trends. The areas thus identified ranged from Guinea to Nigeria for the Common House-Martin, and were located in southern Ghana for the Common Swift. We then regressed annual population indices on mean NDVI values in the putative wintering areas and on the other variables, and used Bayesian model averaging (BMA) and hierarchical partitioning (HP) of variance to assess their relative contribution to population dynamics. We re-ran all the analyses using NDVI values at different spatial scales, and consistently found that our population of Common House-Martin was primarily affected by spring rainfall (43%–47.7% explained variance) and NDVI (24%–26.9%), while the Common Swift population was primarily affected by the NDVI (22.7%–34.8%). Although these results must be further validated, currently they are the only hypotheses about the wintering grounds of the Italian populations of these species, as no Common House-Martin and Common Swift ringed in Italy have been recovered in their wintering ranges.
Resumo:
Population models are essential components of large-scale conservation and management plans for the federally endangered Golden-cheeked Warbler (Setophaga chrysoparia; hereafter GCWA). However, existing models are based on vital rate estimates calculated using relatively small data sets that are now more than a decade old. We estimated more current, precise adult and juvenile apparent survival (Φ) probabilities and their associated variances for male GCWAs. In addition to providing estimates for use in population modeling, we tested hypotheses about spatial and temporal variation in Φ. We assessed whether a linear trend in Φ or a change in the overall mean Φ corresponded to an observed increase in GCWA abundance during 1992-2000 and if Φ varied among study plots. To accomplish these objectives, we analyzed long-term GCWA capture-resight data from 1992 through 2011, collected across seven study plots on the Fort Hood Military Reservation using a Cormack-Jolly-Seber model structure within program MARK. We also estimated Φ process and sampling variances using a variance-components approach. Our results did not provide evidence of site-specific variation in adult Φ on the installation. Because of a lack of data, we could not assess whether juvenile Φ varied spatially. We did not detect a strong temporal association between GCWA abundance and Φ. Mean estimates of Φ for adult and juvenile male GCWAs for all years analyzed were 0.47 with a process variance of 0.0120 and a sampling variance of 0.0113 and 0.28 with a process variance of 0.0076 and a sampling variance of 0.0149, respectively. Although juvenile Φ did not differ greatly from previous estimates, our adult Φ estimate suggests previous GCWA population models were overly optimistic with respect to adult survival. These updated Φ probabilities and their associated variances will be incorporated into new population models to assist with GCWA conservation decision making.
Resumo:
The aim of this paper is to explore the use of both an Eulerian and system-centered method of storm track diagnosis applied to a wide range of meteorological fields at multiple levels to provide a range of perspectives on the Northern Hemisphere winter transient motions and to give new insight into the storm track organization and behavior. The data used are primarily from the European Centre for Medium-Range Weather Forecasts reanalyses project extended with operational analyses to the period 1979-2000. This is supplemented by data from the National Centers for Environmental Prediction and Goddard Earth Observing System 1 reanalyses. The range of fields explored include the usual mean sea level pressure and the lower- and upper-tropospheric height, meridional wind, vorticity, and temperature, as well as the potential vorticity (PV) on a 330-K isentropic surface (PV330) and potential temperature on a PV = 2 PVU surface (theta(PV2)). As well as reporting the primary analysis based on feature tracking, the standard Eulerian 2-6-day bandpass filtered variance analysis is also reported and contrasted with the tracking diagnostics. To enable the feature points to be identified as extrema for all the chosen fields, a planetary wave background structure is removed at each data time. The bandpass filtered variance derived from the different fields yield a rich picture of the nature and comparative magnitudes of the North Pacific and Atlantic storm tracks, and of the Siberian and Mediterranean candidates for storm tracks. The feature tracking allows the cyclonic and anticyclonic activities to be considered seperately. The analysis indicates that anticyclonic features are generally much weaker with less coherence than the cyclonic systems. Cyclones and features associated with them are shown to have much greater coherence and give tracking diagnostics that create a vivid storm track picture that includes the aspects highlighted by the variances as well as highlighting aspects that are not readily available from Eulerian studies. In particular, the upper-tropospheric features as shown by negative theta(PV2), for example, occur in a band spiraling around the hemisphere from the subtropical North Atlantic eastward to the high latitudes of the same ocean basin. Lower-troposphere storm tracks occupy more limited longitudinal sectors, with many of the individual storms possibly triggered from the upper-tropospheric disturbances in the spiral band of activity.
Resumo:
The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change.
Combining altimetric/gravimetric and ocean model mean dynamic topography models in the GOCINA region
Resumo:
The atmospheric circulation changes predicted by climate models are often described using sea level pressure, which generally shows a strengthening of the mid-latitude westerlies. Recent observed variability is dominated by the Northern Annular Mode (NAM) which is equivalent barotropic, so that wind variations of the same sign are seen at all levels. However, in model predictions of the response to anthropogenic forcing, there is a well-known enhanced warming at low levels over the northern polar cap in winter. This means that there is a strong baroclinic component to the response. The projection of the response onto a NAM-like zonal index varies with height. While at the surface most models project positively onto the zonal index, throughout most of the depth of the troposphere many of the models give negative projections. The response to anthropogenic forcing therefore has a distinctive baroclinic signature which is very different to the NAM
Resumo:
In principle the global mean geostrophic surface circulation of the ocean can be diagnosed by subtracting a geoid from a mean sea surface (MSS). However, because the resulting mean dynamic topography (MDT) is approximately two orders of magnitude smaller than either of the constituent surfaces, and because the geoid is most naturally expressed as a spectral model while the MSS is a gridded product, in practice complications arise. Two algorithms for combining MSS and satellite-derived geoid data to determine the ocean’s mean dynamic topography (MDT) are considered in this paper: a pointwise approach, whereby the gridded geoid height field is subtracted from the gridded MSS; and a spectral approach, whereby the spherical harmonic coefficients of the geoid are subtracted from an equivalent set of coefficients representing the MSS, from which the gridded MDT is then obtained. The essential difference is that with the latter approach the MSS is truncated, a form of filtering, just as with the geoid. This ensures that errors of omission resulting from the truncation of the geoid, which are small in comparison to the geoid but large in comparison to the MDT, are matched, and therefore negated, by similar errors of omission in the MSS. The MDTs produced by both methods require additional filtering. However, the spectral MDT requires less filtering to remove noise, and therefore it retains more oceanographic information than its pointwise equivalent. The spectral method also results in a more realistic MDT at coastlines. 1. Introduction An important challenge in oceanography is the accurate determination of the ocean’s time-mean dynamic topography (MDT). If this can be achieved with sufficient accuracy for combination with the timedependent component of the dynamic topography, obtainable from altimetric data, then the resulting sum (i.e., the absolute dynamic topography) will give an accurate picture of surface geostrophic currents and ocean transports.
Resumo:
Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.