928 resultados para Malthusian parameter
Resumo:
This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.
Resumo:
In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge in a storage system that supports fine grained configuration on a variety of parameters. This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter can effect the performance for a range of access patterns when tested with an OpenStack cloud system.
Resumo:
Anaerobic digestion (AD) of wastewater is a very interesting option for waste valorization, energy production and environment protection. It is a complex, naturally occurring process that can take place inside bioreactors. The capability of predicting the operation of such bioreactors is important to optimize the design and the operation conditions of the reactors, which, in part, justifies the numerous AD models presently available. The existing AD models are not universal, have to be inferred from prior knowledge and rely on existing experimental data. Among the tasks involved in the process of developing a dynamical model for AD, the estimation of parameters is one of the most challenging. This paper presents the identifiability analysis of a nonlinear dynamical model for a batch reactor. Particular attention is given to the structural identifiability of the model, which considers the uniqueness of the estimated parameters. To perform this analysis, the GenSSI toolbox was used. The estimation of the model parameters is achieved with genetic algorithms (GA) which have already been used in the context of AD modelling, although not commonly. The paper discusses its advantages and disadvantages.
Resumo:
We use asymptotic linearity to derive confidence intervals for large noncentrality parameters. These results enable us to measure relevance of effects and interactions in multifactors models when we get highly statistically significant the values of F tests statistics. We show how to use our approach by considering two sets of data as application examples.
Cloud parameter retrievals from Meteosat and their effects on the shortwave radiation at the surface
Resumo:
A method based on Spinning Enhanced Visible and Infrared Imager (SEVIRI) measured reflectance at 0.6 and 3.9 µm is used to retrieve the cloud optical thickness (COT) and cloud effective radius (re) over the Iberian Peninsula. A sensitivity analysis of simulated retrievals to the input parameters demonstrates that the cloud top height is an important factor in satellite retrievals of COT and re with uncertainties around 10% for small values of COT and re; for water clouds these uncertainties can be greater than 10% for small values of re. The uncertainties found related with geometries are around 3%. The COT and re are assessed using well-known satellite cloud products, showing that the method used characterize the cloud field with more than 80% (82%) of the absolute differences between COT (re) mean values of all clouds (water plus ice clouds) centred in the range from ±10 (±10 µm), with absolute bias lower than 2 (2 μm) for COT (re) and root mean square error values lower than 10 (8 μm) for COT (re). The cloud water path (CWP), derived from satellite retrievals, and the shortwave cloud radiative effect at the surface (CRESW) are related for high fractional sky covers (Fsc >0.8), showing that water clouds produce more negative CRESW than ice clouds. The COT retrieved was also related to the cloud modification factor, which exhibits reductions and enhancements of the surface SW radiation of the order of 80% and 30%, respectively, for COT values lower than 10. A selected case study shows, using a ground-based sky camera that some situations classified by the satellite with high Fsc values correspond to situations of broken clouds where the enhancements actually occur. For this case study, a closure between the liquid water path (LWP) obtained from the satellite retrievals and the same cloud quantity obtained from ground-based microwave measurements was performed showing a good agreement between both LWP data set values.
Resumo:
This paper proposes an algorithm to estimate two parameter values vs, transcription of frq gene, and vd, maximum rate of FRQ protein degradation for an existing 3rd order Neurospora model in literature. Details of the algorithm with simulation results are shown in this paper.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of global warming on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since all building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. Based on a review of the existing weather data generation models, this paper presents an effective method to generate approximate future hourly weather data suitable for the study of the impact of global warming. Depending on the level of information available for the prediction of future weather condition, it is shown that either the method of retaining to current level, constant offset method or diurnal modelling method may be used to generate the future hourly variation of an individual weather parameter. An example of the application of this method to the different global warming scenarios in Australia is presented. Since there is no reliable projection of possible change in air humidity, solar radiation or wind characters, as a first approximation, these parameters have been assumed to remain at the current level. A sensitivity test of their impact on the building energy performance shows that there is generally a good linear relationship between building cooling load and the changes of weather variables of solar radiation, relative humidity or wind speed.
Resumo:
Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.
Resumo:
We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.
Resumo:
An Australian manufacturer has recently developed an innovative group of cold-formed steel hollow flange sections, one of them is LiteSteel Beams (LSBs). The LSB sections are produced from thin and high strength steels by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They have a unique geometry consisting of rectangular hollow flanges and a relatively slender web. The LSB flexural members are subjected to lateral distortional buckling effects and hence their capacities are reduced for intermediate spans. The current design rules for lateral distortional buckling were developed based on the lower bound of numerical and experimental results. The effect of LSB section geometry was not considered although it could influence the lateral distortional buckling performance. Therefore an accurate finite element model of LSB flexural members was developed and validated using experimental and finite strip analysis results. It was then used to investigate the effect of LSB geometry. The extensive moment capacity data thus developed was used to develop improved design rules for LSBs with one of them considering the LSB geometry effects through a modified slenderness parameter. The use of the new design rules gave higher lateral distortional buckling capacities for LSB sections with intermediate slenderness. The new design rule is also able to accurately predict the lateral distortional buckling moment capacities of other hollow flange beams (HFBs).