942 resultados para MULTIPLE ACTION MECHANISMS
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.
Resumo:
Troglobitic (exclusively subterranean) organisms usually present, among their apomorphies related to the subterranean life (troglomorphisms), the regression of eyes and melanic pigmentation. The degree of regression varies among species, from a slight reduction to the complete loss of eyes and dark pigmentation, without a taxonomic correlation. While mechanisms of eye reduction have been intensively investigated in some troglobites such as the Mexican blind tetra characins, genus Astyanax, and the European salamander, Proteus anguinus, few studies have focused on pigmentation. The Brazilian subterranean ichthyofauna distinguishes not only by the species richness (23 troglobitic fishes so far known) but also by the variation in the degree of reduction of eyes and pigmentation. This study focused on Brazilian fishes completely devoid of melanic pigmentation: the characiform Stygichthys typhlops (Characidae) and the siluriforms Ancistrus formoso (Loricariidae), Rhamdiopsis sp.1 (Heptapteridae; from caves in the Chapada Diamantina, Bahia) and Rhamdiopsis sp. 2 (cave in Campo Formoso, Bahia). In order to investigate if such depigmentation is the result of blockage in some step in the melanogenesis, in vitro tests of administration of L-DOPA were done, using caudal-fin fragments extracted from living fish. Except for Rhamdiopsis sp. 2, all the studied species were DOPA(+), i.e., melanin was synthesized after L-DOPA administration. This indicates these fish do have melanophores but they are unable to convert L-tyrosine to L-DOPA. On the other hand, Rhamdiopsis sp. 2, like the albino specimens of Trichomycterus itacarambiensis previously studied (which correspond to one third of the population), are DOPA(-), either because the block of melanin synthesis occurs downstream in melanogenesis, which is probably the case with T. itacarambiensis (monogenic system in view of the phenotypic discontinuity), or because the so-called albinos do no possess melanophores. The physiological loss in the ability to synthesize melanin, apparently caused by different genetic processes in DOPA(+) and in DOPA(-) fishes, may co-exist in subterranean populations with a decrease in the density of melanophores, as observed in the pigmented two thirds of T. itacarambiensis population, a morphological reduction apparently controlled by polygenic systems producing a continuous phenotypic variation.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Resumo:
BACKGROUND: It is well known the association between gastroesophageal reflux disease and asthma. The hyperreactivity of the airways is a characteristic of an asthmatic. Many studies associate the increase of the airways reactivity with gastroesophageal reflux disease. AIM: In this study we have evaluated the effect of the intraluminal exposition to gastric juice of trachea on the reactivity to methacholine from rats submitted to a pulmonary allergic inflammation. METHODS: Group of rats were sensitized and challenged with ovalbumin. After 24 hours the animals were sacrificed, and their tracheae were removed to be cultured with gastric juice. The gastric juice was obtained from a donor rat. Subsequently the segments were placed into plastic plates with RPMI-1640 for incubation, under suitable atmosphere and time. After the period of incubation the segments were put into chambers for the analysis of the contractile response to methacholine. RESULTS: We observed reduction in the contractile response of trachea cultured with gastric juice from allergic rats. This result was confirmed by the pharmacological treatments with compound 48/80 and dissodium cromoglicate (mast cells blockade), L-NAME (nitric oxide inhibitor, NO), capsaicin (neuropeptides depletion) and indomethacin (ciclooxigenase inhibitor). CONCLUSIONS: Our results highlight to the existence of a complex interaction between pulmonary allergy and gastric juice in the airways. The involvement of the non-adrenergic non-cholinergic system, NO, prostanoids and mast cells are directly related to this interaction. We suggest that the reduced contractile response observed in vitro may represent a protector mechanism of the airways. Despite its presence in the human body it can not be observed due to the predominant effects of excitatory the non-adrenergic non-cholinergic system.
Resumo:
Embora o hormônio do crescimento (GH) seja um dos hormônios mais estudados, vários de seus aspectos fisiológicos ainda não estão integralmente esclarecidos, incluindo sua relação com o exercício físico. Estudos mais recentes têm aumentado o conhecimento a respeito dos mecanismos de ação do GH, podendo ser divididos em: 1) ações diretas, mediadas pela rede de sinalizações intracelulares, desencadeadas pela ligação do GH ao seu receptor na membrana plasmática; e 2) ações indiretas, mediadas principalmente pela regulação da síntese dos fatores de crescimento semelhantes à insulina (IGF). Tem sido demonstrado que o exercício físico é um potente estimulador da liberação do GH. A magnitude deste aumento sofre influência de diversos fatores, em especial, da intensidade e do volume do exercício, além do estado de treinamento. Atletas, normalmente, apresentam menor liberação de GH induzida pelo exercício que indivíduos sedentários ou pouco treinados. Evidências experimentais demonstram que o GH: 1) favorece a mobilização de ácidos graxos livres do tecido adiposo para geração de energia; 2) aumenta a capacidade de oxidação de gordura e 3) aumenta o gasto energético.
Resumo:
The naturally occurring clonal diversity among field isolates of the major human malaria parasite Plasmodium vivax remained unexplored until the early 1990s, when improved molecular methods allowed the use of blood samples obtained directly from patients, without prior in vitro culture, for genotyping purposes. Here we briefly review the molecular strategies currently used to detect genetically distinct clones in patient-derived P. vivax samples, present evidence that multiple-clone P. vivax infections are commonly detected in areas with different levels of malaria transmission and discuss possible evolutionary and epidemiological consequences of the competition between genetically distinct clones in natural human infections. We suggest that, when two or more genetically distinct clones are present in the same host, intra-host competition for limited resources may select for P. vivax traits that represent major public health challenges, such as increased virulence, increased transmissibility and antimalarial drug resistance.