830 resultados para MOUFANG LOOPS
Resumo:
The cyclotides are a family of disulfide-rich proteins from plants. They have the characteristic structural features of a circular protein backbone and a knotted arrangement of disulfide bonds. Structural and biochemical studies of the cyclotides suggest that their unique physiological stability can be loaned to bioactive peptide fragments for pharmaceutical and agricultural development. In particular, the cyclotides incorporate a number of solvent-exposed loops that are potentially suitable for epitope grafting applications. Here, we determine the structure of the largest known cyclotide, palicourein, which has an atypical size and composition within one of the surface-exposed loops. The structural data show that an increase in size of a palicourein loop does not perturb the core fold, to which the thermodynamic and chemical stability has been attributed. The cyclotide core fold, thus, can in principle be used as a framework for the development of useful pharmaceutical and agricultural bioactivities.
Resumo:
The muO-conotoxins are an intriguing class of conotoxins targeting various voltage-dependent sodium channels and molluscan calcium channels. In the current study, we have shown MrVIA and MrVIB to be the first known peptidic inhibitors of the transient tetrodotoxin-resistant (TTX-R) Na+ current in rat dorsal root ganglion neurons, in addition to inhibiting tetrodotoxin-sensitive Na+ currents. Human TTX-R sodium channels are a therapeutic target for indications such as pain, highlighting the importance of the muO-conotoxins as potential leads for drug development. Furthermore, we have used NMR spectroscopy to provide the first structural information on this class of conotoxins. MrVIA and MrVIB are hydrophobic peptides that aggregate in aqueous solution but were solubilized in 50% acetonitrile/water. The three-dimensional structure of MrVIB consists of a small beta-sheet and a cystine knot arrangement of the three-disulfide bonds. It contains four backbone loops between successive cysteine residues that are exposed to the solvent to varying degrees. The largest of these, loop 2, is the most disordered part of the molecule, most likely due to flexibility in solution. This disorder is the most striking difference between the structures of MrVIB and the known delta- and omega-conotoxins, which along with the muO-conotoxins are members of the O superfamily. Loop 2 of omega-conotoxins has previously been shown to contain residues critical for binding to voltage-gated calcium channels, and it is interesting to speculate that the flexibility observed in MrVIB may accommodate binding to both sodium and molluscan calcium channels.
Resumo:
Background & Aims: We have developed a therapeutic strategy for gastrointestinal infections that is based on molecular mimicry of host receptors for bacterial toxins on the surface of harmless gut bacteria. The aim of this study was to apply this to the development of a recombinant probiotic for treatment and prevention of diarrheal disease caused by enterotoxigenic Escherichia coli strains that produce heat-labile enterotoxin. Methods: This was achieved by expressing glycosyltransferase genes from Neisseria meningitidis or Campylobacter jejuni in a harmless Escherichia coli strain (CWG:308), resulting in the production of a chimeric lipopolysaccharide capable of binding heat-labile enterotoxin with high avidity. Results: The strongest heat-labile enterotoxin binding was achieved with a construct (CWG308:pLNT) that expresses a mimic of lacto-N-neotetraose, which neutralized ≥ 93.8% of the heat-labile enterotoxin activity in culture lysates of diverse enterotoxigenic Escherichia coli strains of both human and porcine origin. When tested with purified heat-labile enterotoxin, it was capable of adsorbing approximately 5% of its own weight of toxin. Weaker toxin neutralization was achieved with a construct that mimicked the ganglioside GM2. Preabsorption with, or coadministration of, CWG308:pLNT also resulted in significant in vivo protection from heat-labile enterotoxin-induced fluid secretion in rabbit ligated ileal loops. Conclusions: Toxin-binding probiotics such as those described here have considerable potential for prophylaxis and treatment of enterotoxigenic Escherichia coli-induced travelers' diarrhea.
Resumo:
Background. A disintegrin and metalloproteinase with thrombospondin motifs 1, Adamts-1, is important for the development and function of the kidney. Mice lacking this protein present with renal lesions comprising enlarged calyces, and reduced cortex and medulla layers. Our current findings are consistent with the defect occurring due to a developmental dysgenesis. Methods. We generated Adamts-1 null mice, and further investigated their kidney phenotype in a time course study ranging from E18.5 to 12 months of age. Immunohistochemistry was used to assess the localization of type IV collagen, TGF-beta and F4/80-positive macrophages in the kidneys of Adcants-1 null mice compared to wild-type control animals. The expression of Adamts-1 mRNA was determined in metanephric kidney explants by in situ hybridization. Results. Adamts-1 null mice have a gross kidney defect. At day 18.5 of gestation, the Adcants-1 null kidney has a normal appearance but at birth when the kidney begins to function, the defect becomes evident. During development of the kidney Adamts-1 expression was specifically detected in the developing loops of Henle, as well as in the proximal and distal convoluted tubules. Expression was not detected in the ureter, ureteric bud or its derivatives as had been previously suggested. At 6 months and I year of age, the Adamts-1 null mice displayed interstitial fibrosis in the cortical and medullary regions of the kidney. At I year of age, the Adamts-1 null mice displayed mild interstitial matrix expansion associated with increased collagen type IV expression, without apparent tubular dilatation, compared to wild-type animals. Immunohistochemical analysis demonstrated TGF-beta protein localized to infiltrating macrophages and glomeruli of Adamts-1 null mice. Conclusions. Adamts-1 is required for the normal development of the kidney. The defect observed in its absence results from a dysgenic malformation affecting the medulla that becomes apparent at birth, once the kidneys start to function.
Resumo:
A one-dimensional computational model of pilling of a fibre assembly has been created. The model follows a set of individual fibres, as free ends and loops appear as fuzz and arc progressively withdrawn from the body of the assembly, and entangle to form pills, which eventually break off or are pulled out. The time dependence of the computation is given by ticks, which correspond to cycles of a wear and laundering process. The movement of the fibres is treated as a reptation process. A set of standard values is used as inputs to the computation. Predictions arc given of the change with a number Of cycles of mass of fuzz, mass of pills, and mass removed from the assembly. Changes in the standard values allow sensitivity studies to be carried out.
Resumo:
A Grand Canonical Monte Carlo simulation (GCMC) method is used to study the effects of pore constriction on the adsorption of argon at 87.3 K in carbon slit pores of infinite and finite lengths. It is shown that the pore constriction affects the pattern of adsorption isotherm. First, the isotherm of the composite pore is greater than that of the uniform pore having the same width as the larger cavity of the composite pore. Secondly, the hysteresis loop of the composite pore is smaller than and falls between those of uniform pores. Two types of hysteresis loops have been observed, irrespective of the absence or presence of constriction and their presence depend on pore width. One hysteresis loop is associated with the compression of adsorbed particles and this phenomenon occurs after pore has been filled with particles. The second hysteresis loop is the classical condensation-evaporation loop. The hysteresis loop of a composite pore depends on the sizes of the larger cavity and the constriction. Generally, it is found that the pore blocking effect is not manifested in composite slit pores, and this result does not support the traditional irkbottle pore hypothesis.
Resumo:
A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Several mechanisms for self-enhancing feedback instabilities in marine ecosystems are identified and briefly elaborated. It appears that adverse phases of operation may be abruptly triggered by explosive breakouts in abundance of one or more previously suppressed populations. Moreover, an evident capacity of marine organisms to accomplish extensive geographic habitat expansions may expand and perpetuate a breakout event. This set of conceptual elements provides a framework for interpretation of a sequence of events that has occurred in the Northern Benguela Current Large Marine Ecosystem (off south-western Africa). This history can illustrate how multiple feedback loops might interact with one another in unanticipated and quite malignant ways, leading not only to collapse of customary resource stocks but also to degradation of the ecosystem to such an extent that disruption of customary goods and services may go beyond fisheries alone to adversely affect other major global ecosystem concerns (e.g. proliferations of jellyfish and other slimy, stingy, toxic and/or noxious organisms, perhaps even climate change itself, etc.). The wisdom of management interventions designed to interrupt an adverse mode of feedback operation is pondered. Research pathways are proposed that may lead to improved insights needed: (i) to avoid potential 'triggers' that might set adverse phases of feedback loop operation into motion; and (ii) to diagnose and properly evaluate plausible actions to reverse adverse phases of feedback operation that might already have been set in motion. These pathways include the drawing of inferences from available 'quasi-experiments' produced either by short-term climatic variation or inadvertently in the course of biased exploitation practices, and inter-regional applications of the comparative method of science.
Resumo:
Ecologists and economists both use models to help develop strategies for biodiversity management. The practical use of disciplinary models, however, can be limited because ecological models tend not to address the socioeconomic dimension of biodiversity management, whereas economic models tend to neglect the ecological dimension. Given these shortcomings of disciplinary models, there is a necessity to combine ecological and economic knowledge into ecological-economic models. It is insufficient if scientists work separately in their own disciplines and combine their knowledge only when it comes to formulating management recommendations. Such an approach does not capture feedback loops between the ecological and the socioeconomic systems. Furthermore, each discipline poses the management problem in its own way and comes up with its own most appropriate solution. These disciplinary solutions, however are likely to be so different that a combined solution considering aspects of both disciplines cannot be found. Preconditions for a successful model-based integration of ecology and economics include (1) an in-depth knowledge of the two disciplines, (2) the adequate identification and framing of the problem to be investigated, and (3) a common understanding between economists and ecologists of modeling and scale. To further advance ecological-economic modeling the development of common benchmarks, quality controls, and refereeing standards for ecological-economic models is desirable.
Resumo:
Mechanosensitivity is a ubiquitous sensory mechanism found in living organisms. The simplest known mechanotransducing mechanism is found in bacteria in the form of the mechanosensitive membrane channel of large conductance, MscL. This channel has been studied extensively using a variety of methods at a functional and structural level. The channel is gated by membrane tension in the lipid bilayer alone. It serves as a safety valve protecting bacterial cells against hypoosmotic shock. MscL of Escherichia coli embedded in bilayers composed of asymmetric amounts of single-tailed and double-tailed lipids has been shown to gate spontaneously, even in the absence of membrane tension. To gain insight into the effect of the lipid membrane composition and geometry on MscL structure, a fully solvated, all-atom model of MscL in a stress-free curved bilayer composed of double- and single-tailed lipids was studied using a 9.5-ns molecular dynamics simulation. The bilayer was modeled as a domed structure accommodating the asymmetric composition of the monolayers. During the course of the simulation a spontaneous restructuring of the periplasmic loops occurred, leading to interactions between one of the loops and phospholipid headgroups. Previous experimental studies of the role of the loops agree with the observation that opening starts with a restructuring of the periplasmic loop, suggesting an effect of the curved bilayer. Because of limited resources, only one simulation of the large system was performed. However, the results obtained suggest that through the geometry and composition of the bilayer the protein structure can be affected even on short timescales.
Resumo:
Pyrin domain (PYD)-containing proteins are key components of pathways that regulate inflammation, apoptosis, and cytokine processing. Their importance is further evidenced by the consequences of mutations in these proteins that give rise to autoimmune and hyperinflammatory syndromes. PYDs, like other members of the death domain ( DD) superfamily, are postulated to mediate homotypic interactions that assemble and regulate the activity of signaling complexes. However, PYDs are presently the least well characterized of all four DD subfamilies. Here we report the three-dimensional structure and dynamic properties of ASC2, a PYD-only protein that functions as a modulator of multidomain PYD-containing proteins involved in NF-KB and caspase-1 activation. ASC2 adopts a six-helix bundle structure with a prominent loop, comprising 13 amino acid residues, between helices two and three. This loop represents a divergent feature of PYDs from other domains with the DD fold. Detailed analysis of backbone N-15 NMR relaxation data using both the Lipari-Szabo model-free and reduced spectral density function formalisms revealed no evidence of contiguous stretches of polypeptide chain with dramatically increased internal motion, except at the extreme N and C termini. Some mobility in the fast, picosecond to nanosecond timescale, was seen in helix 3 and the preceding alpha 2-alpha 3 loop, in stark contrast to the complete disorder seen in the corresponding region of the NALP1 PYD. Our results suggest that extensive conformational flexibility in helix 3 and the alpha 2-alpha 3 loop is not a general feature of pyrin domains. Further, a transition from complete disorder to order of the alpha 2-alpha 3 loop upon binding, as suggested for NALP1, is unlikely to be a common attribute of pyrin domain interactions.
Resumo:
Real-time control programs are often used in contexts where (conceptually) they run forever. Repetitions within such programs (or their specifications) may either (i) be guaranteed to terminate, (ii) be guaranteed to never terminate (loop forever), or (iii) may possibly terminate. In dealing with real-time programs and their specifications, we need to be able to represent these possibilities, and define suitable refinement orderings. A refinement ordering based on Dijkstra's weakest precondition only copes with the first alternative. Weakest liberal preconditions allow one to constrain behaviour provided the program terminates, which copes with the third alternative to some extent. However, neither of these handles the case when a program does not terminate. To handle this case a refinement ordering based on relational semantics can be used. In this paper we explore these issues and the definition of loops for real-time programs as well as corresponding refinement laws.
Resumo:
A specialised reconfigurable architecture for telecommunication base-band processing is augmented with testing resources. The routing network is linked via virtual wire hardware modules to reduce the area occupied by connecting buses. The number of switches within the routing matrices is also minimised, which increases throughput without sacrificing flexibility. The testing algorithm was developed to systematically search for faults in the processing modules and the flexible high-speed routing network within the architecture. The testing algorithm starts by scanning the externally addressable memory space and testing the master controller. The controller then tests every switch in the route-through switch matrix by making loops from the shared memory to each of the switches. The local switch matrix is also tested in the same way. Next the local memory is scanned. Finally, pre-defined test vectors are loaded into local memory to check the processing modules. This algorithm scans all possible paths within the interconnection network exhaustively and reports all faults. Strategies can be inserted to bypass minor faults
Resumo:
This paper details the design of an autonomous helicopter control system using a low cost sensor suite. Control is maintained using simple nested PID loops. Aircraft attitude, velocity, and height is estimated using an in-house designed IMU and vision system. Information is combined using complimentary filtering. The aircraft is shown to be stabilised and responding to high level demands on all axes, including heading, height, lateral velocity and longitudinal velocity.