880 resultados para MATHEMATICAL
Resumo:
A Epistemologia Genética defende que o indivÃduo passa por várias etapas de desenvolvimento ao longo da sua vida. O desenvolvimento é observado pela sobreposição do equilÃbrio entre a assimilação e a acomodação, resultando em adaptação. Assim, nesta formulação, o ser humano assimila os dados que obtém do exterior, mas uma vez que já tem uma estrutura mental que não está vazia, precisa adaptar esses dados à estrutura mental já existe. O processo de modificação de si próprio é chamado de acomodação. Este esquema revela que nenhum conhecimento chega do exterior sem que sofra alguma alteração pelo indivÃduo, sendo que tudo o que se aprende é influenciado por aquilo que já havia sido aprendido. A assimilação ocorre quando a informação é incorporada à s estruturas já pré-existentes nessa dinâmica estrutura cognitiva, enquanto que a adaptação ocorre quando o organismo se modifica de alguma maneira de modo a incorporar dinamicamente a nova informação. Por fim, de um pensamento moderno que, buscando a sÃntese inusitada entre o biológico e o lógico-matemático, parece encontrar seus limites na desconstrução ainda mais inusitada a que tende sistematicamente todo o pensamento na atualidade: a de si mesmo se construindo de modo essencialmente esclarecido
Resumo:
We show some evidences that the Southeastern Brazilian Continental Shelf (SBCS) has a devil's staircase structure, with a sequence of scarps and terraces with widths that obey fractal formation rules. Since the formation of these features is linked with the sea-level variations, we say that the sea level changes in an organized pulsating way. Although the proposed approach was applied in a particular region of the Earth, it is suitable to be applied in an integrated way to other shelves around the world, since the analyses favor the revelation of the global sea-level variations. Copyright (C) 2009 M. S. Baptista and L. A. Conti.
Resumo:
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
Resumo:
A system of nearest neighbors Kuramoto-like coupled oscillators placed in a ring is studied above the critical synchronization transition. We find a richness of solutions when the coupling increases, which exists only within a solvability region (SR). We also find that the solutions possess different characteristics, depending on the section of the boundary of the SR where they appear. We study the birth of these solutions and how they evolve when the coupling strength increases, and determine the diagram of solutions in phase space.
Resumo:
A generalized version of the nonequilibrium linear Glauber model with q states in d dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the q states. Exact expressions for the two-time autocorrelation and response functions on a d-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model.
Resumo:
We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at the onset of complete synchronization.
Resumo:
Understanding the emergence of extreme opinions and in what kind of environment they might become less extreme is a central theme in our modern globalized society. A model combining continuous opinions and observed discrete actions (CODA) capable of addressing the important issue of measuring how extreme opinions might be has been recently proposed. In this paper I show extreme opinions to arise in a ubiquitous manner in the CODA model for a multitude of social network structures. Depending on network details reducing extremism seems to be possible. However, a large number of agents with extreme opinions is always observed. A significant decrease in the number of extremists can be observed by allowing agents to change their positions in the network.
Resumo:
This study aimed to describe and compare the ventilation behavior during an incremental test utilizing three mathematical models and to compare the feature of ventilation curve fitted by the best mathematical model between aerobically trained (TR) and untrained ( UT) men. Thirty five subjects underwent a treadmill test with 1 km.h(-1) increases every minute until exhaustion. Ventilation averages of 20 seconds were plotted against time and fitted by: bi-segmental regression model (2SRM); three-segmental regression model (3SRM); and growth exponential model (GEM). Residual sum of squares (RSS) and mean square error (MSE) were calculated for each model. The correlations between peak VO2 (VO2PEAK), peak speed (Speed(PEAK)), ventilatory threshold identified by the best model (VT2SRM) and the first derivative calculated for workloads below (moderate intensity) and above (heavy intensity) VT2SRM were calculated. The RSS and MSE for GEM were significantly higher (p < 0.01) than for 2SRM and 3SRM in pooled data and in UT, but no significant difference was observed among the mathematical models in TR. In the pooled data, the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.58; p < 0.01) and Speed(PEAK) (r = -0.46; p < 0.05) while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r = -0.43; p < 0.05). In UT group the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.65; p < 0.05) and Speed(PEAK) (r = -0.61; p < 0.05), while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r= -0.73; p < 0.01), Speed(PEAK) (r = -0.73; p < 0.01) and VO2PEAK (r = -0.61; p < 0.05) in TR group. The ventilation behavior during incremental treadmill test tends to show only one threshold. UT subjects showed a slower ventilation increase during moderate intensities while TR subjects showed a slower ventilation increase during heavy intensities.
Resumo:
This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark beta algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples. Copyright (C) 2009 H. B. Coda and R. R. Paccola.
Resumo:
The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.
Resumo:
This paper investigates the concept of piezoaeroelasticity for energy harvesting. The focus is placed on mathematical modeling and experimental validations of the problem of generating electricity at the flutter boundary of a piezoaeroelastic airfoil. An electrical power output of 10.7 mW is delivered to a 100 k load at the linear flutter speed of 9.30 m/s (which is 5.1% larger than the short-circuit flutter speed). The effect of piezoelectric power generation on the linear flutter speed is also discussed and a useful consequence of having nonlinearities in the system is addressed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3427405]
Resumo:
This work presents the analysis of nonlinear aeroelastic time series from wing vibrations due to airflow separation during wind tunnel experiments. Surrogate data method is used to justify the application of nonlinear time series analysis to the aeroelastic system, after rejecting the chance for nonstationarity. The singular value decomposition (SVD) approach is used to reconstruct the state space, reducing noise from the aeroelastic time series. Direct analysis of reconstructed trajectories in the state space and the determination of Poincare sections have been employed to investigate complex dynamics and chaotic patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincare mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents. Copyright (C) 2009 F. D. Marques and R. M. G. Vasconcellos.
Resumo:
The synchronizing properties of two diffusively coupled hyperchaotic Lorenz 4D systems are investigated by calculating the transverse Lyapunov exponents and by observing the phase space trajectories near the synchronization hyperplane. The effect of parameter mismatch is also observed. A simple electrical circuit described by the Lorenz 4D equations is proposed. Some results from laboratory experiments with two coupled circuits are presented. Copyright (C) 2009 Ruy Barboza.
Resumo:
A combination of trajectory sensitivity method and master-slave synchronization was proposed to parameter estimation of nonlinear systems. It was shown that master-slave coupling increases the robustness of the trajectory sensitivity algorithm with respect to the initial guess of parameters. Since synchronization is not a guarantee that the estimation process converges to the correct parameters, a conditional test that guarantees that the new combined methodology estimates the true values of parameters was proposed. This conditional test was successfully applied to Lorenz's and Chua's systems, and the proposed parameter estimation algorithm has shown to be very robust with respect to parameter initial guesses and measurement noise for these examples. Copyright (C) 2009 Elmer P. T. Cari et al.
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.