942 resultados para Lung Neoplasms
Resumo:
Trabalho apresentado na São Paulo Advanced School of Comparative Oncology, Águas de São Pedro, SP, 2012.
Resumo:
Acute respiratory distress syndrome is the most severe manifestation of acute lung injury and it is associated with high mortality rate. Despite better understanding of ARDS pathophysiology, its mechanism is still unclear. Mechanical ventilation is the main ARDS supportive treatment. However, mechanical ventilation is a non-physiologic process and complications are associated with its application. Mechanical ventilation may induce lung injury, referred to as ventilator-induced lung injury. Frequently, VILI is related to macroscopic injuries associated with alveolar rupture. The present article is a review of the literature on ventilator-induced lung injury in acute respiratory distress syndrome. Animal and human studies were reviewed. We mainly selected publications in the past 5 years, but did not exclude commonly referenced and highly regarded older publications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Cancer is the second leading cause of death in Argentina, and there is little knowledge about its incidence. The first study based on population-based cancer registry described spatial incidence and indicated that there existed at least county-level aggregation. The aim of the present work is to model the incidence patterns for the most incidence cancer in Córdoba Province, Argentina, using information from the Córdoba Cancer Registry by performing multilevel mixed model approach to deal with dependence and unobserved heterogeneity coming from the geo-reference cancer occurrence. Methods: Standardized incidence rates (world standard population) (SIR) by sex based on 5-year age groups were calculated for 109 districts nested on 26 counties for the most incidence cancers in Cordoba using 2004 database. A Poisson twolevel random effect model representing unobserved heterogeneity between first level-districts and second level-counties was fitted to assess the spatial distribution of the overall and site specific cancer incidence rates. Results: SIR cancer at Córdoba province shown an average of 263.53±138.34 and 200.45±98.30 for men and women, respectively. Considering the ratio site specific mean SIR to the total mean, breast cancer ratio was 0.25±0.19, prostate cancer ratio was 0.12±0.10 and lower values for lung and colon cancer for both sexes. The Poisson two-level random intercepts model fitted for SIR data distributed with overdispersion shown significant hierarchical structure for the cancer incidence distribution. Conclusions: a strong spatial-nested effect for the cancer incidence in Córdoba was observed and will help to begin the study of the factors associated with it.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heterogeneity of hyaluronidase (HYAL) expression has been identified in tumors and shows promise as an indicator of disease progression. The expression profile of alternatively spliced forms of HYAL was evaluated in tumors and normal lung tissue from 69 resected tumors of patients with adenocarcinomas and squamous cell carcinomas. HYAL1-wild-type (wt) and variants 1 to 5, HYAL2-wt, and HYAL3-wt, and variants 1 to 3 were identified by polymerase chain reaction and direct sequencing. Different proportions of the 3 HYAL-wt and variants were expressed in tumor and normal lung tissues. HYAL1-wt was associated with a poorer prognosis and HYAL3-vl with a better prognosis. HYAL splice variants are associated with histology and outcome, suggesting that strategies aimed at modulating their levels may be effective for lung cancer treatment. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This study aimed to verify the impact of inhalable particulate matter (PM10) on cancer incidence and mortality in the city of Sao Paulo, Brazil. Statistical techniques were used to investigate the relationship between PM10 on cancer incidence and mortality in selected districts. For some types of cancer (skin, lung, thyroid, larynx, and bladder) and some periods, the correlation coefficients ranged from 0.60 to 0.80 for incidence. Lung cancer mortality showed more correlations during the overall period. Spatial analysis showed that districts distant from the city center showed higher than expected relative risk, depending on the type of cancer According to the study, urban PM10 can contribute to increased incidence of some cancers and may also contribute to increased cancer mortality. The results highlight the need to adopt measures to reduce atmospheric PM10 levels and the importance of their continuous monitoring.
Resumo:
OBJECTIVE: This study evaluated the performance of lungs that were preserved with different solutions (Celsior, Perfadex or saline) in an ex vivo rat lung perfusion system. METHODS: Sixty Wistar rats were anesthetized, anticoagulated and randomized into three groups (n = 20). The rats were subjected to antegrade perfusion via the pulmonary artery with Perfadex, Celsior, or saline, followed by 6 or 12 hours of ischemia (4 degrees C, n = 10 in each group). Respiratory mechanics, gas exchange and hemodynamics were measured at 10-minute intervals during the reperfusion of heart-lung blocks in an ex vivo system (IL2-Isolated Perfused Rat or Guinea Pig Lung System, Harvard Apparatus, Holliston, Massachusetts, USA; Hugo Sachs Elektronik, Germany) for 60 minutes. The lungs were prepared for histopathology and evaluated for edema following reperfusion. Group comparisons were performed using ANOVA and the Kruskal-Wallis test with a 5% level of significance. RESULTS: Gas exchange was not significantly different between lungs perfused with either Perfadex or Celsior at the same ischemic times, but it was very low in lungs that were preserved with saline. Airway resistance was greater in the lungs that were preserved for 12 hours. Celsior lungs that were preserved for 6 and 12 hours exhibited lower airway resistance (p = 0.01) compared to Perfadex lungs. Pulmonary artery pressure was not different between the groups, and no significant differences in histopathology and apoptosis were observed between the groups. CONCLUSIONS: Lungs that were preserved with Celsior or Perfadex exhibited similar gas exchange and histopathological findings. Airway resistance was slightly lower in the Celsior-preserved lungs compared with the Perfadex-preserved lungs.
Resumo:
Background: The use of biomass for cooking and heating is considered an important factor associated with respiratory diseases. However, few studies evaluate the amount of particulate matter less than 2.5 mu in diameter (PM2.5), symptoms and lung function in the same population. Objectives: To evaluate the respiratory effects of biomass combustion and compare the results with those of individuals from the same community in Brazil using liquefied petroleum gas (Gas). Methods: 1402 individuals in 260 residences were divided into three groups according to exposure (Gas, Indoor-Biomass, Outside-Biomass). Respiratory symptoms were assessed using questionnaires. Reflectance of paper filters was used to assess particulate matter exposure. In 48 residences the amount of PM2.5 was also quantified. Pulmonary function tests were performed in 120 individuals. Results: Reflectance index correlated directly with PM2.5 (r=0.92) and was used to estimate exposure (ePM2.5). There was a significant increase in ePM2.5 in Indoor-Biomass and Outside-Biomass, compared to Gas. There was a significantly increased odds ratio (OR) for cough, wheezing and dyspnea in adults exposed to Indoor-Biomass (OR=2.93, 2.33, 2.59, respectively) and Outside-Biomass (OR=1.78, 1.78, 1.80, respectively) compared to Gas. Pulmonary function tests revealed both Non-Smoker-Biomass and Smoker-Gas individuals to have decreased %predicted-forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) as compared to Non-Smoker-Gas. Pulmonary function tests data was inversely correlated with duration and ePM2.5. The prevalence of airway obstruction was 20% in both Non-Smoker-Biomass and Smoker-Gas subjects. Conclusion: Chronic exposure to biomass combustion is associated with increased prevalence of respiratory symptoms, reduced lung function and development of chronic obstructive pulmonary disease. These effects are associated with the duration and magnitude of exposure and are exacerbated by tobacco smoke. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Mechanical ventilation is the major cause of iatrogenic lung damage in intensive care units. Although inflammation is known to be involved in ventilator-induced lung injury (VILI), several aspects of this process are still unknown. Pentraxin 3 (PTX3) is an acute phase protein with important regulatory functions in inflammation which has been found elevated in patients with acute respiratory distress syndrome. This study aimed at investigating the direct effect of PTX3 production in the pathogenesis of VILI. Genetically modified mice deficient and that over express murine Ptx3 gene were subjected to high tidal volume ventilation (V-T = 45 mL/kg, PEEPzero). Morphological changes and time required for 50% increase in respiratory system elastance were evaluated. Gene expression profile in the lungs was also investigated in earlier times in Ptx3-overexpressing mice. Ptx3 knockout and wild-type mice developed same lung injury degree in similar times (156 +/- 42 min and 148 +/- 41 min, respectively: p = 0.8173). However, Ptx3 overexpression led to a faster development of VILI in Ptx3-overexpressing mice (77 +/- 29 min vs 118 +/- 41 min, p = 0.0225) which also displayed a faster kinetics of Il1b expression and elevated Ptx3, Cxcl1 and Ccl2 transcripts levels in comparison with wild-type mice assessed by quantitative real-time polymerase chain reaction. Ptx3 deficiency did not impacted the time for VILI induced by high tidal volume ventilation but Ptx3-overexpression increased inflammatory response and reflected in a faster VILI development. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar macrophages (AMs) were cultured in vitro for analysis of I kappa B and p65 subunit of NF kappa B phosphorylation and MyD88 and SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the NF kappa B activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of I kappa B and p65 subunit occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NF kappa B, increased SOCS-1 and decreased MyD88 mRNA.
Resumo:
Aims: Development of effective immune-based therapies for patients with non-small-cell lung carcinoma (NSCLC) depends on an accurate characterization of complex interactions that occur between immune cells and the tumour environment. Methods and results: Innate and adaptive immune responses were evaluated in relation to prognosis in 65 patients with surgically excised NSCLC. Immunohistochemistry and morphometry were used to determine the abundance and distribution of immune cells. We found low numbers of immune cells and levels of cytokines in the tumour environment when compared with surrounding parenchyma. Smoking was associated inversely with the adaptive immune response and directly with innate immunity. We observed a prominent adaptive immune response in squamous cell carcinomas (SCC) but greater innate immune responses in adenocarcinomas and large cell carcinomas. Cox model analysis showed a low risk of death for smoking <41 packs/year, N-0 tambour stage, squamous carcinoma, CD4(+) > 16.81% and macrophages/monocytes >4.5%. Collectively, the data indicate that in NSCLC there is not a substantive local immune cell infiltrate within the tumour. Conclusion: Although immune cell infiltration is limited in NSCLC it appears to have an impact on prognosis and this may be of relevance for new immunotherapeutic approaches.
Glucocorticoid and Estrogen Receptors Are Reduced in Mitochondria of Lung Epithelial Cells in Asthma
Resumo:
Mitochondrial glucocorticoid (mtGR) and estrogen (mtER) receptors participate in the coordination of the cell's energy requirement and in the mitochondrial oxidative phosphorylation enzyme (OXPHOS) biosynthesis, affecting reactive oxygen species (ROS) generation and induction of apoptosis. Although activation of mtGR and mtER is known to trigger anti-inflammatory signals, little information exists on the presence of these receptors in lung tissue and their role in respiratory physiology and disease. Using a mouse model of allergic airway inflammation disease and applying confocal microscopy, subcellular fractionation, and Western blot analysis we showed mitochondrial localization of GR alpha and ER beta in lung tissue. Allergic airway inflammation caused reduction in mtGR alpha, mtER beta, and OXPHOS enzyme biosynthesis in lung cells mitochondria and particularly in bronchial epithelial cells mitochondria, which was accompanied by decrease in lung mitochondrial mass and induction of apoptosis. Confirmation and validation of the reduction of the mitochondrial receptors in lung epithelial cells in human asthma was achieved by analyzing autopsies from fatal asthma cases. The presence of the mitochondrial GR alpha and ER beta in lung tissue cells and especially their reduction in bronchial epithelial cells during allergic airway inflammation suggests a crucial role of these receptors in the regulation of mitochondrial function in asthma, implicating their involvement in the pathophysiology of the disease.
Resumo:
Purpose: We sought to determine the mechanisms of downregulation of the airway transcription factor Foxa2 in lung cancer and the expression status of Foxa2 in non-small-cell lung cancer (NSCLC). Methods: A series of 25 lung cancer cell lines were evaluated for Foxa2 protein expression, FOXA2 mRNA levels, FOXA2 mutations, FOXA2 copy number changes and for evidence of FOXA2 promoter hypermethylation. In addition, 32 NSCLCs were sequenced for FOXA2 mutations and 173 primary NSCLC tumors evaluated for Foxa2 expression using an immunohistochemical assay. Results: Out of the 25 cell lines, 13 (52%) had undetectable FOXA2 mRNA. The expression of FOXA2 mRNA and Foxa2 protein were congruent in 19/22 cells (p = 0.001). FOXA2 mutations were not identified in primary NSCLCs and were infrequent in cell lines. Focal or broad chromosomal deletions involving FOXA2 were not present. The promoter region of FOXA2 had evidence of hypermethylation, with an inverse correlation between FOXA2 mRNA expression and presence of CpG dinucleotide methylation (p < 0.0001). In primary NSCLC tumor specimens, there was a high frequency of either absence (42/173, 24.2%) or no/low expression (96/173,55.4%) of Foxa2. In 130 patients with stage I NSCLC there was a trend towards decreased survival in tumors with no/low expression of Foxa2 (HR of 1.6, 95%CI 0.9-3.1; p = 0.122). Conclusions: Loss of expression of Foxa2 is frequent in lung cancer cell lines and NSCLCs. The main mechanism of downregulation of Foxa2 is epigenetic silencing through promoter hypermethylation. Further elucidation of the involvement of Foxa2 and other airway transcription factors in the pathogenesis of lung cancer may identify novel therapeutic targets. (C) 2012 Elsevier Ireland Ltd. All rights reserved.