996 resultados para Lourdes Castro
Resumo:
Biodiesel is an important new alternative fuel. The feedstock used and the process employed determines whether it fulfills the required specifications. In this work, an identification method is proposed using an electronic nose (e-nose). Four samples of biodiesel from different sources and one of petrodiesel were analyzed and well-recognized by the e-nose. Both pure biodiesel and B20 blends were studied. Furthermore, an innovative semiquantitative method is proposed on the basis of the smellprints correlated by a feed-forward artificial neural network. The results have demonstrated that the e-nose can be used to identify the biodiesel source and as a preliminary quantitative assay in place of expensive equipment.
Resumo:
Amylases and lipases are highly demanded industrial enzymes in various sectors such as food, pharmaceuticals, textiles, and detergents. Amylases are of ubiquitous occurrence and hold the maximum market share of enzyme sales. Lipases are the most versatile biocatalyst and bring about a range of bioconversion reactions such as hydrolysis, inter-esterification, esterification, alcoholysis, acidolysis, and aminolysis. The objective of this work was to study the feasibility for amylolitic and lipolytic production using a bacterium strain isolated from petroleum contaminated soil in the same submerged fermentation. This was a sequential process based on starch and vegetable oils feedstocks. Run were performed in batchwise using 2% starch supplemented with suitable nutrients and different vegetable oils as a lipase inducers. Fermentation conditions were pH 5.0; 30 degrees C, and stirred speed (200 rpm). Maxima activities for amyloglucosidase and lipase were, respectively, 0.18 and 1,150 U/ml. These results showed a promising methodology to obtain both enzymes using industrial waste resources containing vegetable oils.
Resumo:
Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The technique based on sol-gel approach was used to generate silica matrices derivatives by hydrolysis of silane compounds. The present work evaluates a hybrid matrix obtained with tetraethoxysilane (TEOS) and polyvinyl alcohol (PVA) on the immobilization yield of lipase from Pseudomonas fluorescens. The resulting polysiloxane-polyvinyl alcohol (POS-PVA) matrix combines the property of PVA as a suitable polymer to retain proteins with an excellent optical, thermal and chemical stability of the host silicon oxide matrix. Aiming to render adequate functional groups to the covalent binding with the enzyme the POS-PVA matrix was chemically modified using epichlorohydrin. The results were compared with immobilized derivative on POS-PVA activated with glutaraldehyde. Immobilization yield based on the recovered lipase activity depended on the activating agent and the highest efficiency (32%) was attained when lipase was immobilized on POS-PVA activated with epichlorohydrin, which, probably, provided more linkage points for the covalent bind of the enzyme on the support. This was confirmed by determining the morphological properties using different techniques as X-ray diffraction and scanning electron microscopy (SEM). Comparative studies were carried out to attain optimal activities for free lipase and immobilized systems. For this purpose, a central composite experimental design with different combinations of pH and temperature was performed. Enzymatic hydrolysis with the immobilized enzyme in the framework of the Michaelis-Menten mechanism was also reported. Under optimum conditions, the immobilized derivative on POS-PVA activated with epichlorohydrin showed to have more affinity for the substrate in the hydrolysis of olive oil, with a Michaelis-Menten constant value (K-m) of 293 mM, compared to the value of 401 mM obtained for the immobilized lipase on support activated with glutaraldehyde. Data generated by DSC showed that both immobilized derivatives have similar thermal stabilities. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Performance of different immobilized lipases in palm oil biodiesel synthesis. Optimized conditions for palm oil and ethanol enzymatic biodiesel synthesis were determined with different immobilized lipases SiO(2)-PVA-immobilized lipase from Pseudomonas fluorescens and acrylic resin-immobilized lipase, Novozym (R) 435, from Candida antartica, in solvent-free medium. A full factorial design assessed the influence of temperature (42 - 58 degrees C) and ethanol: palm oil (6:1 - 18:1) molar ratio on the transesterification yield. Main effects were adjusted by multiple regression analysis to linear models and the maximum transesterification yield was obtained at 42 degrees C and 18:1 ethanol: palm oil molar ratio. Mathematical models featuring total yield for each immobilized lipase were suitable to describe the experimental results.
Resumo:
Currently, several research groups and industries are studying applications for the residues from agrobusiness, other than burning them. Thinking about a better use for the sugarcane bagasse, this study aims to obtain membranes of cellulose acetate composite with oxidized lignin, both isolated from sugarcane bagasse. Thus, we obtain a product with higher commercial value, from a natural fiber, which has applications in water and effluent treatment, and further contributes to the maintenance of the environment. Macromolecular components of bagasse were separated by steam explosion pre-treatment and a basic treatment with NaOH. The pulp obtained was bleached and acetylated, and subsequently membranes of this cellulose acetate were synthesized, incorporating oxidized lignin to these membranes in order to increase the metal retention capacity of them. The acetylated material was analyzed by IR, confirming acetylation. Degree of substitution was determined by volumetry, resulting in a diacetate to the MA I condition and a triacetate to MA II condition. It was observed that for the material with a lower degree of acetylation, it has better incorporation of oxidized lignins. SEM, showed membranes with dense structure. Tests were conducted to evaluate metal retention, and the average capacity of removal was 16% Cu(+2) in steady-state experiments.
Resumo:
Milkfat-soybean oil blends were enzymatically interesterified (EIE) by Aspergillus niger lipase immobilized on SiO(2)-PVA hybrid composite in a solvent free system. An experimental mixture design was used to study the effects of binary blends of milkfat-soybean oil (MF:SBO) at different proportions (0:100; 25:75; 33:67; 50:50; 67:33; 75:25; 100:0) on the compositional and textural properties of the EIE products, considering, as response variables, the interesterification yield (IY), consistency and hardness. Lipase-catalysed interesterification reactions increased the relative proportion of TAGs` C(46)-C(52) and decreased the TAGs` C(40)-C(42) and C(54) concentrations. The highest IY was attained (10.8%) for EIE blend of MF:SBO 67:33 resulting in a more spreadable material at refrigerator temperature in comparison with butter, milkfat or non-interesterified (NIE) blend. In this case, consistency and hardness values were at least 32% lower than values measured for butter. Thus, using A. niger lipase immobilized on SiO(2)-PVA improves the textural properties of milkfat and has potential for development of a product incorporating unsaturated and essential fatty acids from soybean oil. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Microbial lipase preparations from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) were immobilized by multipoint covalent attachment on Toyopearl AF-amino-650M resin and the most active and thermal stable derivatives used to catalyze the transesterificanon reaction of babassu and palm oils with ethanol in solvent-free media For this different activating agents mainly glutaraldehyde glycidol and epichlorohydrin were used and immobilization parameters were estimated based on the hydrolysis of olive oil emulsion and butyl butyrate synthesis ILL immobilized on glyoxyl-resin allowed obtaining derivatives with the highest hydrolytic activity (HA(der)) and thermal stability between 27 and 31 times more stable than the soluble lipase Although PFL derivatives were found to be less active and thermally stables similar formation of butyl butyrate concentrations were found for both ILL and PFL derivatives The highest conversion into biodiesel was found in the transesterification of palm oil catalyzed by both ILL and PFL glyoxyl-derivatives (c) 2010 Elsevier B V All rights reserved
Resumo:
This work presents a thermoeconomic optimization methodology for the analysis and design of energy systems. This methodology involves economic aspects related to the exergy conception, in order to develop a tool to assist the equipment selection, operation mode choice as well as to optimize the thermal plants design. It also presents the concepts related to exergy in a general scope and in thermoeconomics which combines the thermal sciences principles (thermodynamics, heat transfer, and fluid mechanics) and the economic engineering in order to rationalize energy systems investment decisions, development and operation. Even in this paper, it develops a thermoeconomic methodology through the use of a simple mathematical model, involving thermodynamics parameters and costs evaluation, also defining the objective function as the exergetic production cost. The optimization problem evaluation is developed for two energy systems. First is applied to a steam compression refrigeration system and then to a cogeneration system using backpressure steam turbine. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Milkfat (MF)/soybean oil (SBO) blends ranging from 50% to 100% of milkfat (w/w) were enzymatically interesterified with a sn-1,3 specific lipase from Rhizopus oryzae immobilized on polysiloxane-polyvinyl alcohol matrix, in a solvent free medium. Interesterification progress was monitored by following the changes in the relative proportions of 50-carbon triacylglycerols (TAGS) to 44-carbon TAGs (50/44 ratio) in the reaction. The starting materials and products were also analyzed in terms of consistency measured in a texturometer. All reactions gave interesterified (IE) products with lower consistency than non-interesterified (NIE) MF:SBO blends and interesterification degree varied from 0.54 to 2.60 in 48 h reaction. The highest interesterification degree was achieved for 65:35 MF:SBO blends, which gave 76% reduction in the consistency. These results showed the potential of the immobilized lipase to change the TAGs profile of the MF:SBO blend allowing to obtain cold-spreadable milkfat. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Glycerol-fatty acid esterification has been conducted with lipase from Penicillium camembertii lipase immobilized on epoxy SiO(2)-PVA in solvent-free media, with the major product being 1-monoglyceride, a useful food emulsifier. For a given set of initial conditions, the influence of reaction was measured in terms of product formation and selectivity using different fatty acids as acyl donors. Results were found to be relatively dependent of the chain length of the fatty acids, showing high specificity for both myristic and palmytic acids attaining final mixture that fulfills the requirements established by the World Health Organization to be used as food emulsifiers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to produce an immobilized form of lipase from Burkholderia cepacia (lipase PS) with advantageous catalytic properties and stability to be used in the ethanolysis of different feedstocks, mainly babassu oil and tallow beef. For this purpose lipase PS was immobilized on two different non-commercial matrices, such as inorganic matrix (niobium oxide, Nb(2)O(5)) and a hybrid matrix (polysiloxane-polyvinyl alcohol, SiO(2)-PVA) by covalent binding. The properties of free and immobilized enzymes were searched and compared. The best performance regarding all the analyzed parameters (biochemical properties, kinetic constants and thermal stability) were obtained when the lipase was immobilized on SiO(2)-PVA. The superiority of this immobilized system was also confirmed in the transe-sterification of both feedstocks, attained higher yields and productivities. (C) 2010 Elsevier Ltd. All rights reserved.