990 resultados para Load cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research on hollow flange beams has led to the development of an innovative rectangular hollow flange channel beam (RHFCB) for use in floor systems. The new RHFCB is a mono-symmetric structural section made by intermittently rivet fastening two torsionally rigid closed rectangular hollow flanges to a web plate element, which allows section optimisation by selecting appropriate combinations of web and flange widths and thicknesses. However, the current design rules for cold-formed steel sections are not directly applicable to rivet fastened RHFCBs. To date, no investigation has been conducted on their web crippling behaviour and strengths. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of rivet fastened RHFCBs under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. It showed that RHFCBs failed by web crippling, flange crushing and their combinations. Comparison of ultimate web crippling capacities with the predictions from the design equations in AS/NZS 4600 and AISI S100 showed that the current design equations are unconservative for rivet fastened RHFCB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of rivet fastened RHFCBs. These equations can also be used to predict the capacities of RHFCBs subject to combined web crippling and flange crushing conservatively. However, new capacity equations were proposed in the case of flange crushing failures that occurred in thinner flanges with smaller bearing lengths. This paper presents the details of this web crippling experimental study of RHFCB sections and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light gauge Steel Frame (LSF) walls are extensively used in the building industry due to the many advantages they provide over other wall systems. Although LSF walls have been used widely, fire design of LSF walls is based on approximate prescriptive methods based on limited fire tests. Also these fire tests were conducted using the standard fire curve [1] and the applicability of available design rules to realistic design fire curves has not been verified. This paper investigates the accuracy of existing fire design rules in the current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [2] based on Eurocode 3 Part 1.3 [3] and AS/NZS 4600 [4] for standard fire exposure [1] were investigated in detail to determine their applicability to predict the axial compression strengths and fire resistance ratings of LSF walls exposed to realistic design fire curves. This paper also presents the fire performance results of LSF walls exposed to a range of realistic fire curves obtained using a finite element analysis based parametric study. The results from the parametric study were used to develop a simplified design method based on the critical hot flange temperature to predict the fire resistance ratings of LSF walls exposed to realistic fire curves. Finally, the stud failure times (fire resistance rating) obtained from the fire design rules and the simplified design method were compared with parametric study results for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic fire curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer with 650,000 new cases p/a worldwide. HNSCC causes high morbidity with a 5-year survival rate of less than 60%, which has not improved due to the lack of early detection (Bozec et al. Eur Arch Otorhinolaryngol. 2013;270: 2745–9). Metastatic disease remains one of the leading causes of death in HNSCC patients. This review article provides a comprehensive overview of literature over the past 5 years on the detection of circulating tumour cells (CTCs) in HNSCC; CTC biology and future perspectives. CTCs are a hallmark of invasive cancer cells and key to metastasis. CTCs can be used as surrogate markers of overall survival and progression-free survival. CTCs are currently used as prognostic factors for breast, prostate and colorectal cancers using the CellSearch® system. CTCs have been detected in HNSCC, however, these numbers depend on the technique applied, time of blood collection and the clinical stage of the patient. The impact of CTCs in HNSCC is not well understood, and thus, not in routine clinical practice. Validated detection technologies that are able to capture CTCs undergoing epithelial–mesenchymal transition are needed. This will aid in the capture of heterogeneous CTCs, which can be compiled as new targets for the current food and drug administration-cleared CellSearch® system. Recent studies on CTCs in HNSCC with the CellSearch® have shown variable data. Therefore, there is an immediate need for large clinical trials encompassing a suite of biomarkers capturing CTCs in HNSCC, before CTCs can be used as prognostic markers in HNSCC patient management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique bias-dependent phenomenon in CH3NH3PbI3−xClx based planar perovskite solar cells has been demonstrated, in which the photovoltaic parameters derived from the current–voltage (I–V) curves are highly dependent on the initial positive bias of the I–V measurement. In FTO/CH3NH3PbI3−xClx/Au devices, the open-circuit voltage and short-circuit current increased by ca. 337.5% and 281.9% respectively, by simply increasing the initial bias from 0.5 V to 2.5 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have developed a new efficient hole transport material (HTM) composite based on poly(3- hexylthiophene) (P3HT) and bamboo-structured carbon nanotubes (BCNs) for CH3NH3PbI3 (MAPbI3) based perovskite solar cells. Compared to pristine P3HT, it is found that the crystallinity of P3HT was significantly improved by addition of BCNs, which led to over one order of magnitude higher conductivity for the composite containing 1–2 wt% BCNs in P3HT. In the meantime, the interfacial charge transfer between the MAPbI3 light absorbing layer and the HTM composite layer based on P3HT/BCNs was two-fold faster than pristine P3HT. More importantly, the HTM film with a superior morphological structure consisting of closely compact large grains was achieved with the composite containing 1 wt% BCNs in P3HT. The study by electrochemical impedance spectroscopy has confirmed that the electron recombination in the solar cells was reduced nearly ten-fold with the addition of 1 wt% carbon nanotubes in the HTM composite. Owing to the superior HTM film morphology and the significantly reduced charge recombination, the energy conversion efficiency of the perovskite solar cells increased from 3.6% for pristine P3HT to 8.3% for P3HT/(1 wt% BCNs) with a significantly enhanced open circuit voltage (Voc) and fill factor (FF). The findings of this work are important for development of new HTM for high performance perovskite solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic solar cells show great promise as an economically and environmentally friendly technology to utilize solar energy because of their simple fabrication processes and minimal material usage. However, new innovations and breakthroughs are needed for organic solar cell technology to become competitive in the future. This article reviews research efforts and accomplishments focusing on three issues: power conversion efficiency, device stability and processability for mass production, followed by an outlook for optimizing OSC performance through device engineering and new architecture designs to realize next generation organic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We initially look at the changing energy environment and how that can have a dramatic change on the potential of alternative energies, in particular those of organic photovoltaicvs (OPV) cells. In looking at OPV's we also address the aspects of where we are with the current art and why we may not be getting the best from our materials. In doing so, we propose the idea of changing how we build organic photovoltaics by addressing the best method to contain light within the devices. Our initial effort is in addressing how these microscale optical concentrators work in the form of optical fibers in terms of absorption. We have derived a mathematical method which takes account of the input angle of light to achieve optimum absorption. However, in doing so we also address the complex issue how the changing refractive indices in a multilayer device can alter how we input the light. We have found that by knowing the materials refractive index our model takes into account the incident plane, meridonal plane, cross sectional are and path length to ensure optical angular input. Secondly, we also address the practicalities of making such vertical structures the greater issue of changing light intensity incident on a solar cell and how that aspects alters how we view the performance of organic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical transmittance and conductivity for thin metallic films, such as Au, are two inversely related and extremely important parameters for its application in organic photovoltaics as the front electrode. We report our findings on how these parameters have been optimized to attain maximum possible efficiencies by fabricating organic solar cells with thin Au film anodes of differing optical transmittances and consequently due to scaling at the nanolevel, varying electrical conductivities. There was an extraordinary improvement in the overall solar cell efficiency (to the order of 49%) when the Au thin film transmittance was increased from 38% to 54%. Surface morphologies of these thin films also have an effect on the critical parameters including, Voc, Jsc and FF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc) increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the APCE over the spectrum 400−550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the excellent charge injection and collection process in the device. The investigation on charge transport and recombination of the device has indicated that the enhanced electron collection efficiency and reduced electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced excitation has indicated that the hole transport from QDs to the reduced species (S2−) in electrolyte was very efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF. This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and passivation shell (ZnSe) structure, leading to more efficient electron−hole separation and slower electron recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipped channel beams (LCBs) are commonly used as floor joists and bearers in buildings. However, they are subjected to specific failure modes such as web crippling. Despite considerable web crippling research, recent studies [1-6] have shown that the current web crippling design rules are unable to predict the test capacities under ETF and ITF load cases. In many instances, the predictions by the available design standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 [7-9] are inconsistent. Hence thirty-six tests were conducted to assess the web crippling behaviour and strengths of LCBs under two flange load cases. Experimental web crippling capacities were then compared with the predictions from the current design rules. These comparisons showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LCB sections under ETF load case and are conservative for ITF load case. Hence improved equations were proposed to determine the web crippling capacities of LCBs. Suitable design rules were also developed using the direct strength method. This paper presents the details of this study and the results including improved design rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solution-processable, non-fullerene electron acceptor, 2,2′-(((5,5-dioctyl-5 H-dibenzo[b,d]silole-3,7-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))bis(1 H-indene-1,3(2 H)-dione) (called N5) comprised of dibenzosilole and 1,3-indanedione building blocks was designed, synthesized, and fully characterized. N5 is highly soluble in various organic solvents, has high thermal stability, and has energy levels matching those of archetypal donor poly(3-hexylthiophene). Solution-processable, bulk-heterojunction solar cells afforded promising power conversion efficiency of 2.76 % when N5 was used as a non-fullerene electron acceptor along with the conventional donor polymer poly(3-hexylthiophene). As per our knowledge, the material reported herein is the first example in the literature where synchronous use of such building blocks is demonstrated in the design an efficient, non-fullerene acceptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, solution-processable non-fullerene electron acceptor 9,9′-(5,5-dioctyl-5H-dibenzo [b,d]silole-3,7-diyl)bis(2,7-dioctyl-4-(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (B3) based on dibenzosilole and naphthalenediimide building blocks was designed, synthesized, characterized and successfully used in a bulk-heterojunction organic solar cell. B3 displayed excellent solubility, thermal stability and acquired electron energy levels matching with those of archetypal donor polymer poly(3-hexylthiophene). Solution-processable bulk-heterojunction devices afforded 1.16% power conversion efficiency with a high fill factor of 53%. B3 is the first example in the literature using this design principle, where mild donor units at the peripheries of end-capped naphthalenediimide units tune solubility and optical energy levels simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin provides a promising biomaterial for ocular tissue reconstruction including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a similar thickness as Bruch’s membrane (3 μm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell). Cultures established on either material developed a cobblestoned morphology with partial pigmentation within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned medium collected from above and below both membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrate that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model.