962 resultados para International Energy Agency.
Resumo:
We would like to thank the animal house staff and all members of the Energetics group for their invaluable help at various stages throughout the project. This work was supported by Natural Environment Research Council grant (NERC, NE/C004159/1). YG was supported by a scholarship from the rotary foundation. LV was supported by a Rubicon grant from the Netherlands Scientific Organisation (NWO).
Resumo:
We thank Donna Wallace and the animal house staff for their help with the animal studies. We thank Pat Bain for help in preparing the figures. This work was supported by the Biotechnology and Biological Science Research Council (BBSRC) grant number BB/K001043/1 (G.H., A.W.R., P.N.S., P.J.Mc. and P.J.M.) and the Scottish Government (A.W.R., L.M.T., C.D.M. and P.J.M.).
Resumo:
Peer reviewed
Resumo:
Acknowledgements This work was supported by the UK Energy Research Centre Phase 2, under its Energy and Environment theme Grant Number NE/J005924/1 and NE/G007748/1. Open Access funded by Natural Environment Research Council
Resumo:
Peer reviewed
Resumo:
We report on an outburst of the high mass X-ray binary 4U 0115+634 with a pulse period of 3.6 s in 2008 March/April as observed with RXTE and INTEGRAL. During the outburst the neutron star’s luminosity varied by a factor of 10 in the 3–50 keV band. In agreement with earlier work we find evidence of five cyclotron resonance scattering features at ~10.7, 21.8, 35.5, 46.7, and 59.7 keV. Previous work had found an anticorrelation between the fundamental cyclotron line energy and the X-ray flux. We show that this apparent anticorrelation is probably due to the unphysical interplay of parameters of the cyclotron line with the continuum models used previously, e.g., the negative and positive exponent power law (NPEX). For this model, we show that cyclotron line modeling erroneously leads to describing part of the exponential cutoff and the continuum variability, and not the cyclotron lines. When the X-ray continuum is modeled with a simple exponentially cutoff power law modified by a Gaussian emission feature around 10 keV, the correlation between the line energy and the flux vanishes, and the line parameters remain virtually constant over the outburst. We therefore conclude that the previously reported anticorrelation is an artifact of the assumptions adopted in the modeling of the continuum.
Resumo:
Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.
Resumo:
An asymmetric aqueous capacitor was constructed by employing zeolite-templated carbon (ZTC) as a pseudocapacitive positive electrode and KOH-activated carbon as a stable negative electrode. The asymmetric capacitor can be operated with the working voltage of 1.4 V, and exhibits an energy density that is comparable to those of conventional capacitors utilizing organic electrolytes, thanks to the large pseudocapacitance of ZTC. Despite relatively thick electrode (0.2 mm) configuration, the asymmetric capacitor could be well operated under a current density of 500 mA g −1.
Resumo:
Different types of spin–spin coupling constants (SSCCs) for several representative small molecules are evaluated and analyzed using a combination of 10 exchange functionals with 12 correlation functionals. For comparison, calculations performed using MCSCF, SOPPA, other common DFT methods, and also experimental data are considered. A detailed study of the percentage of Hartree–Fock exchange energy in SSCCs and in its four contributions is carried out. From the above analysis, a combined functional formed with local Slater (34%), Hartree–Fock exchange (66%), and P86 correlation functional (S66P86) is proposed in this paper. The accuracy of the values obtained with this hybrid functional (mean absolute deviation of 4.5 Hz) is similar to that of the SOPPA method (mean absolute deviation of 4.6 Hz).
Resumo:
The main objectives of this research are (i) to determine the correct use of infrared thermography in the energy analysis of buildings and to verify its application in conducting energy audits thereof; (ii) to conduct a proposal for a standard methodology (with its corresponding final report) for energy audit of buildings based on currently applicable regulations, specifying the parts of the audit process where the authors propose to include thermal inspections by using infrared thermography.
Resumo:
Carbon and graphene-based materials often show some amount of pseudocapacitance due to their oxygen-functional groups. However, such pseudocapacitance is generally negligible in organic electrolytes and has not attracted much attention. In this work, we report a large pseudocapacitance of zeolite-templated carbon (ZTC) based on the oxygen-functional groups in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate (Et4NBF4/PC). Due to its significant amount of active edge sites, a large amount of redox-active oxygen functional groups are introduced into ZTC, and ZTC shows a high specific capacitance (330 F g−1). Experimental results suggest that the pseudocapacitance could be based on the formation of anion and cation radicals of quinones and ethers, respectively. Moreover, ZTC shows pseudocapacitance also in 1 M lithium hexafluorophosphate dissolved with a mixture of ethylene carbonate and diethyl carbonate (LiPF6/EC+DEC) which is used for lithium-ion batteries and lithium-ion capacitors.
Resumo:
This Policy Brief urges the European Union to consider reinforcing the Energy Community by further Europeanising the Energy Community Treaty. It argues that the level of dysfunctionality with respect to the rule of law and corruption will make it very hard to establish a pathway for accession for most Balkan states. However, the demand across the region for a sustainable, competitive and stable energy sector creates an ‘energy incentive’ that the Union can leverage to improve the rule of law and adherence to European rules. Furthermore, a juridical strengthening of the Energy Community Treaty will also strengthen the hand of those parties supporting energy liberalisation rules across the region, such as independent businesses, consumers and NGOs. In addition, there is likely to be significant spill-over effects from decisions of a European Energy Community Court operating in the region on the rule of law in general and the accession process in particular.
Resumo:
The most straightforward European single energy market design would entail a European system operator regulated by a single European regulator. This would ensure the predictable development of rules for the entire EU, significantly reducing regulatory uncertainty for electricity sector investments. But such a first-best market design is unlikely to be politically realistic in the European context for three reasons. First, the necessary changes compared to the current situation are substantial and would produce significant redistributive effects. Second, a European solution would deprive member states of the ability to manage their energy systems nationally. And third, a single European solution might fall short of being well-tailored to consumers’ preferences, which differ substantially across the EU. To nevertheless reap significant benefits from an integrated European electricity market, we propose the following blueprint: First, we suggest adding a European system-management layer to complement national operation centres and help them to better exchange information about the status of the system, expected changes and planned modifications. The ultimate aim should be to transfer the day-to-day responsibility for the safe and economic operation of the system to the European control centre. To further increase efficiency, electricity prices should be allowed to differ between all network points between and within countries. This would enable throughput of electricity through national and international lines to be safely increased without any major investments in infrastructure. Second, to ensure the consistency of national network plans and to ensure that they contribute to providing the infrastructure for a functioning single market, the role of the European ten year network development plan (TYNDP) needs to be upgraded by obliging national regulators to only approve projects planned at European level unless they can prove that deviations are beneficial. This boosted role of the TYNDP would need to be underpinned by resolving the issues of conflicting interests and information asymmetry. Therefore, the network planning process should be opened to all affected stakeholders (generators, network owners and operators, consumers, residents and others) and enable the European Agency for the Cooperation of Energy Regulators (ACER) to act as a welfare-maximising referee. An ultimate political decision by the European Parliament on the entire plan will open a negotiation process around selecting alternatives and agreeing compensation. This ensures that all stakeholders have an interest in guaranteeing a certain degree of balance of interest in the earlier stages. In fact, transparent planning, early stakeholder involvement and democratic legitimisation are well suited for minimising as much as possible local opposition to new lines. Third, sharing the cost of network investments in Europe is a critical issue. One reason is that so far even the most sophisticated models have been unable to identify the individual long-term net benefit in an uncertain environment. A workable compromise to finance new network investments would consist of three components: (i) all easily attributable cost should be levied on the responsible party; (ii) all network users that sit at nodes that are expected to receive more imports through a line extension should be obliged to pay a share of the line extension cost through their network charges; (iii) the rest of the cost is socialised to all consumers. Such a cost-distribution scheme will involve some intra-European redistribution from the well-developed countries (infrastructure-wise) to those that are catching up. However, such a scheme would perform this redistribution in a much more efficient way than the Connecting Europe Facility’s ad-hoc disbursements to politically chosen projects, because it would provide the infrastructure that is really needed.
Resumo:
This report assesses the energy costs borne by the steel industry in the EU between 2010 and 2012, and compares the energy costs, including both the energy components and other regulatory costs, to production costs, turnover and margins of steel-makers. The estimates of energy costs are based on primary sources, i.e. is on information provided by steel-makers through a written questionnaire. This information was validated by the research team by checking annual energy bills, when available, and other public sources. In this respect, this exercise represents a unique fact-based investigation into the costs of energy for steel-makers in Europe, whereas most of the information currently available in the public domain is based on secondary or statistical information. In 2012, the median EU steel plant pays about €33/MWh for gas, up from €26/MWh in 2010. As for electricity, in 2012 the EU median plant pays €62/MWh, up from €59/MWh in 2010. The report also includes a comparison with the prices of energy carriers paid by producers based in the US.
Resumo:
On 22 January 2014, the European Commission is expected to publish the proposals for the 2030 Framework for Climate and Energy Policies, which will be discussed and possibly – or maybe, partly – agreed during the 20-21 March 2014 European Council. This is the first comprehensive review of the 2007-09 Climate and Energy Package, which resulted in the so-called ‘20-20-20’ targets by 2020. The principal intention is to define the EU’s climate change and energy policy framework for the next decade and beyond to give investors an adequate amount of predictability if not certainty. This Commentary argues, however, that the ‘2030 Framework’ is not just about predictability; it is also about making the proper adjustments based on the lessons learned and also in response to new issues that have emerged in the interim. The authors ask what the main lessons are and how they should influence the 2030 Framework. Or put differently, what are the conditions that the “2030 Framework” will need to meet in order to offer a viable package for discussion?