892 resultados para Homocysteine -- Pathophysiology
Resumo:
Although many studies have explored the stimuli which promote hypertrophic growth or death in cardiac myocytes and the signaling pathways which they activate, the mechanisms by which these pathways promote the pathophysiological responses are still obscure. The mitogen-activated protein kinase (MAPK) cascades (in which MAPKs are phosphorylated and activated by upstream MAPK kinases [MKKs] which are, in turn, phosphorylated and activated by MKK kinases [MKKKs]) were identified in the early- to mid-1990s as potentially key regulatory pathways in cardiac myocyte pathophysiology.1,2 The principal MAPKs investigated in cardiac myocytes are the extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38-MAPKs. ERK1/2 are potently activated by hypertrophic stimuli, whereas JNKs and p38-MAPKs are potently activated by cellular stresses (eg, oxidative stress). However, there is cross-talk such that JNKs and p38-MAPKs are activated by hypertrophic stimuli and ERK1/2 are activated by cellular stresses, and the contribution of each pathway to the overall cardiac myocyte response is not entirely clear. MAPKs phosphorylate a number of known transcription factors to alter their transactivating activities thus, presumably, influencing gene expression to elicit the cellular response.3 Nevertheless, the immediate consequences (ie, the transcription factors which are phosphorylated) and downstream consequences (ie, genes with altered expression) of MAPK signaling in the heart or specifically in cardiac myocytes are still largely unknown. To start to address this issue for the p38-MAPK pathway in the (rat) heart (Figure), Tenhunen et al4 directly injected adenoviruses encoding wild-type (WT) p38-MAPKα together …
Resumo:
The contractile cells in the heart (the cardiac myocytes) are terminally differentiated. In response to pathophysiological stresses, cardiac myocytes undergo hypertrophic growth or apoptosis, responses associated with the development of cardiac pathologies. There has been much effort expended in gaining an understanding of the stimuli which promote these responses, and in identifying the intracellular signaling pathways which are activated and potentially involved. These signaling pathways presumably modulate gene and protein expression to elicit the end-stage response. For the regulation of gene expression, the signal may traverse the cytoplasm to modulate nuclear-localized transcription factors as occurs with the mitogen-activated protein kinase or protein kinase B/Akt cascades. Alternatively, the signal may promote translocation of transcription factors from the cytoplasm to the nucleus as is seen with the calcineurin/NFAT and JAK/STAT systems. We present an overview of the principal signaling pathways implicated in the regulation of gene expression in cardiac myocyte pathophysiology, and summarize the current understanding of these pathways, the transcription factors they regulate and the changes in gene expression associated with the development of cardiac pathologies. Finally, we discuss how intracellular signaling and gene expression may be integrated to elicit the overall change in cellular phenotype.
Resumo:
Background— T NADPH oxidase, by generating reactive oxygen species, is involved in the pathophysiology of many cardiovascular diseases and represents a therapeutic target for the development of novel drugs. A single-nucleotide polymorphism (SNP) C242T of the p22phox subunit of NADPH oxidase has been reported to be negatively associated with coronary heart disease (CHD) and may predict disease prevalence. However, the underlying mechanisms remain unknown. Methods and Results— Using computer molecular modelling we discovered that C242T SNP causes significant structural changes in the extracellular loop of p22phox and reduces its interaction stability with Nox2 subunit. Gene transfection of human pulmonary microvascular endothelial cells showed that C242T p22phox reduced significantly Nox2 expression but had no significant effect on basal endothelial O2.- production or the expression of Nox1 and Nox4. When cells were stimulated with TNFα (or high glucose), C242T p22phox inhibited significantly TNFα-induced Nox2 maturation, O2.- production, MAPK and NFκB activation and inflammation (all p<0.05). These C242T effects were further confirmed using p22phox shRNA engineered HeLa cells and Nox2-/- coronary microvascular endothelial cells. Clinical significance was investigated using saphenous vein segments from non CHD subjects after phlebectomies. TT (C242T) allele was common (prevalence of ~22%) and compared to CC, veins bearing TT allele had significantly lower levels of Nox2 expression and O2.- generation in response to high glucose challenge. Conclusions— C242T SNP causes p22phox structural changes that inhibit endothelial Nox2 activation and oxidative response to TNFα or high glucose stimulation. C242T SNP may represent a natural protective mechanism against inflammatory cardiovascular diseases.
Resumo:
Epidemiological studies suggest that glucocorticoid excess in the fetus may contribute to the pathophysiology of cardiovascular diseases in adulthood. However, the impact of maternal glucocorticoid on the cardiovascular system of the offspring has not been much explored in studies involving humans, especially in childhood. The objective of this study was to assess the influence of maternal cortisol concentrations on child arterial elasticity. One hundred and thirty pregnant women followed from 1997 to 2000, and respective children 5-7 years of age followed from 2004 to 2006 were included in the study. Maternal cortisol was determined in saliva by an enzyme immunoassay utilizing the mean concentration of nine samples of saliva. Arterial elasticity was assessed by the large artery elasticity index (LAEI; the capacitive elasticity of large arteries) by recording radial artery pulse wave, utilizing the equipment HDI/PulseWave CR-2000 Cardiovascular Profiling System (R). The nutritional status of the children was determined by the body mass index (BMI). Insulin concentration was assessed by chemiluminescence, and insulin resistance by the homeostasis model assessment. Blood glucose, total cholesterol and fractions (LDL-c and HDL-c) and triglyceride concentrations were determined by automated enzymatic methods. The association between maternal cortisol and child arterial elasticity was assessed by multivariate linear regression analysis. There was a statistically significant association between maternal cortisol and LAEI (P=0.02), controlling for birth weight, age, BMI and HDL-c of the children. This study suggests that exposure to higher glucocorticoid concentrations in the prenatal period is associated to lower arterial elasticity in childhood, an earlier cardiovascular risk marker.
Resumo:
Social behavior depends on the integrity of social brain circuitry. The temporal lobe is an important part of the social brain, and manifests morphological and functional alterations in autism spectrum disorders (ASD). Rats with temporal lobe epilepsy (TLE), induced with pilocarpine, were subjected to a social discrimination test that has been used to investigate potential animal models of ASD, and the results were compared with those for the control group. Rats with TLE exhibited fewer social behaviors than controls. No differences were observed in nonsocial behavior between groups. The results suggest an important role for the temporal lobe in regulating social behaviors. This animal model might be used to explore some questions about ASD pathophysiology. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objectives This study established the value of the 6-sulfatoxymelatonin (aMT6s) urine concentration as a predictor of the therapeutic response to noradrenaline reuptake inhibitors in depressive patients. Methods Twenty-two women aged 18-60 years were selected. Depressive symptoms were assessed by using the Hamilton Depression Scale. Urine samples were collected at 0600-1200 h, 1200-1800 h, 1800-2400 h, and 2400-0600 h intervals, 1 day before and 1 day after starting on the nortriptyline treatment. Urine aMT6s concentration was analyzed by a one-way analysis of variance/Bonferroni test. Spearman`s rank correlation coefficient was used to analyze the correlation between depressive symptoms after 2 weeks of antidepressant treatment and the increase in aMT6s urine concentration. Results Higher and lower size effect groups were compared by independent Student`s t-tests. At baseline, the 2400- to 0600-h interval differed from all other intervals presenting a significantly higher aMT6s urine concentration. A significant difference in aMT6s urine concentrations was found 1 day after treatment in all four intervals. Higher size effect group had lower levels of depressive symptoms 2 weeks after the treatment. A positive correlation between depressive symptoms and the delta of aMT6s in the 2400-0600h interval was observed. Conclusion Our results reinforce the hypothesis that aMT6s excretion is a predictor of clinical outcome in depression, especially in regard to noradrenaline reuptake inhibitors. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Alzheimer`s Disease (AD) is the most common type of dementia among the elderly, with devastating consequences for the patient, their relatives, and caregivers. More than 300 genetic polymorphisms have been involved with AD, demonstrating that this condition is polygenic and with a complex pattern of inheritance. This paper aims to report and compare the results of AD genetics studies in case-control and familial analysis performed in Brazil since our first publication, 10 years ago. They include the following genes/markers: Apolipoprotein E (APOE), 5-hidroxytryptamine transporter length polymorphic region (5-HTTLPR), brain-derived neurotrophin factor (BDNF), monoamine oxidase A (MAO-A), and two simple-sequence tandem repeat polymorphisms (DXS1047 and D10S1423). Previously unpublished data of the interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) genes are reported here briefly. Results from others Brazilian studies with AD patients are also reported at this short review. Four local families studied with various markers at the chromosome 21, 19, 14, and 1 are briefly reported for the first time. The importance of studying DNA samples from Brazil is highlighted because of the uniqueness of its population, which presents both intense ethnical miscegenation, mainly at the east coast, but also clusters with high inbreeding rates in rural areas at the countryside. We discuss the current stage of extending these studies using high-throughput methods of large-scale genotyping, such as single nucleotide polymorphism microarrays, associated with bioinformatics tools that allow the analysis of such extensive number of genetics variables, with different levels of penetrance. There is still a long way between the huge amount of data gathered so far and the actual application toward the full understanding of AD, but the final goal is to develop precise tools for diagnosis and prognosis, creating new strategies for better treatments based on genetic profile.
Resumo:
Aberrant alterations in glucose and lipid concentrations and their pathways of metabolism are a hallmark of diabetes. However, much less is known about alterations in concentrations of amino acids and their pathways of metabolism in diabetes. In this review we have attempted to highlight, integrate and discuss common alterations in amino acid metabolism in a wide variety of cells and tissues and relate these changes to alterations in endocrine, physiologic and immune function in diabetes.
Resumo:
Objective.- To assess urinary 6-sulphatoxymelatonin levels in a large consecutive series of patients with migraine and several comorbidities (chronic fatigue, fibromyalgia, insomnia, anxiety, and depression) as compared with controls. Background.- Urine analysis is widely used as a measure of melatonin secretion, as it is correlated with the nocturnal profile of plasma melatonin secretion. Melatonin has critical functions in human physiology and substantial evidence points to its importance in the regulation of circadian rhythms, sleep, and headache disorders. Methods.- Urine samples were collected into a single plastic container over a 12-hour period from 8:00 pm to 8:00 am of the next day, and 6-sulphatoxymelatonin was measured by quantitative ELISA. All of the patients were given a detailed questionnaire about headaches and additionally answered the following questionnaires: Chalder fatigue questionnaire, Epworth somnolence questionnaire, State-Trait Anxiety Inventory, and the Beck Depression Inventory. Results.- A total of 220 subjects were evaluated - 73 (33%) had episodic migraine, 73 (33%) had chronic migraine, and 74 (34%) were enrolled as control subjects. There was a strong correlation between the concentration of 6-sulphatoxymelatonin detected and chronic migraine. Regarding the comorbidities, this study objectively demonstrates an inverse relationship between 6-sulphatoxymelatonin levels and depression, anxiety, and fatigue. Conclusions.- To our knowledge, this is the first study to evaluate the relationship between the urinary concentration of melatonin and migraine comorbidities. These results support hypothalamic involvement in migraine pathophysiology.
Resumo:
In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-. but not the Noxl- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1- or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O(2)(center dot-)) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O(2)(center dot-) production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. The host response to sepsis involves an inflammatory response, whereby the pathogen is initially sensed by innate immune receptors (pattern recognition receptors [PRRs]). When it persists, this immune response leads to secretion of proinflammatory products that induce organ dysfunction such as renal failure and consequently increased mortality. Moreover, the injured tissue releases molecules resulting from extracellular matrix degradation or dying cells that function as alarmines, which are recognized by PRR in the absence of pathogens in a second wave of injury. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are the best characterized PRRs. They are expressed in many cell types and throughout the nephron. Their activation leads to translocation of nuclear factors and synthesis of proinflammatory cytokines and chemokines. TLRs` signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1 beta and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.
Resumo:
Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation. Here, we synthesized diapocynin and studied its effect on inhibition of gp91(phox) RNA expression. We found that diapocynin strongly inhibited the expression of gp91(phox)mRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-alpha production, diapocynin had a much more pronounced effect, on both TNF-alpha and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91(phox) mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched. (C) 2010 Elsevier Inc. All rights reserved.
Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway
Resumo:
Giachini FR, Zemse SM, Carneiro FS, Lima VV, Carneiro ZN, Callera GE, Ergul A, Webb RC, Tostes RC. Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway. Am J Physiol Heart Circ Physiol 296: H489-H496, 2009. First published December 12, 2008; doi:10.1152/ajpheart.00251.2008.-Interleukin-10 (IL-10) is an anti-inflammatory cytokine with protective actions on the vasculature. On the other hand, endothelin ( ET)-1 has potent vasoconstrictor, mitogenic, and proinflammatory activities, which have been implicated in the pathophysiology of a number of cardiovascular diseases. We hypothesized that, in a condition where ET-1 expression is upregulated, i.e., on infusion of TNF-alpha, IL-10 confers vascular protection from ET-1-induced injury. Aortic rings and first-order mesenteric arteries from male C57BL/6 (WT) and IL-10-knockout (IL-10(-/-)) mice were treated with human recombinant TNF-alpha (220 ng.kg(-1).day(-1)) or vehicle (saline) for 14 days. TNF-alpha infusion significantly increased blood pressure in IL-10(-/-), but not WT, mice. TNF-alpha augmented vascular ET-1 mRNA expression in arteries from WT and IL-10(-/-) mice. ET type A (ETA) receptor expression was increased in arteries from IL-10(-/-) mice, and TNF-alpha infusion did not change vascular ETA receptor expression in control or IL-10(-/-) mice. Aorta and mesenteric arteries from TNF-alpha-infused IL-10(-/-) mice displayed increased contractile responses to ET-1, but not the ET type B receptor agonist IRL-1620. The ETA receptor antagonist atrasentan completely abolished responses to ET-1 in aorta and mesenteric vessels, whereas the ERK1/2 inhibitor PD-98059 abrogated increased contractions to ET-1 in arteries from TNF-alpha-infused IL-10(-/-) mice. Infusion of TNF-alpha, as well as knockdown of IL-10 (IL-10(-/-)), induced an increase in total and phosphorylated ERK1/2. These data demonstrate that IL-10 counteracts ET(A)-mediated vascular responses to ET-1, as well as activation of the ERK1/2 pathway.
Resumo:
Ischemia-reperfusion injury is the major cause of organ dysfunction or even nonfunction following transplantation. It can attenuate the long-term survival of transplanted organs. To evaluate the severity of renal ischemia injury determined by histology, we applied laser(442 nm and 532 nm) induced fluorescence (LIF), mitochondria respiration, and membrane swelling to evaluate 28 Wistar rats that underwent left kidney warm ischemia for 20, 40, 60, or 80 minutes. LIF performed before ischemia (control) was repeated at 20, 40, 60, and 80 minutes thereafter. We harvested left kidney tissue samples immediately after LIF determination for histology and mitochondrial analyses: state 3 and 4 respiration, respiration control rate (RCR), and membrane swelling. The association of optic spectroscopy with histological damage showed: LIF, 442 nm (r(2) = 0.39, P < .001) and 532 nm, (r(2) = 0.18, P = .003); reflecting laser/fluorescence-induced, 442 nm (r(2) = 0.20, P = .002) and 532 nm (r(2) = 0.004, P = .67). The associations between mitochondria function and tissue damage were: state 3 respiration (r(2) = 0.43, P = .0004), state 4 respiration (r(2) = 0.03, P = 0.38), RCR (r(2) = 0.28, P = .007), and membrane swelling (r(2) = 0.02, P = .43). The intensity of fluorescence emitted by tissue excited by laser, especially at a wave length of 442 nm, was determined in real time. Mitochondrial state 3 respiration and respiratory control ratio also exhibited good correlations with the grade of ischemic tissue damage.
Resumo:
Contrary to expectations derived from preclinical studies of the effects of stress, and imaging studies of adults with posttraumatic stress disorder (PTSD), there is no evidence of hippocampus atrophy in children with PTSD. Multiple pediatric studies have reported reductions in the corpus callosum - the primary white matter tract in the brain. Consequently, in the present study, diffusion tensor imaging was used to assess white matter integrity in the corpus callosum in 17 maltreated children with PTSD and 15 demographically matched normal controls. Children with PTSD had reduced fractional anisotropy in the medial and posterior corpus, a region which contains interhemispheric projections from brain structures involved in circuits that mediate the processing of emotional stimuli and various memory functions - core disturbances associated with a history of trauma. Further exploration of the effects of stress on the corpus callosum and white matter development appears a promising strategy to better understand the pathophysiology of PTSD in children. (C) 2007 Elsevier Ireland Ltd. All rights reserved.