902 resultados para High input power
Resumo:
国家自然科学基金
Resumo:
于2010-11-23批量导入
Resumo:
Quantum dot (QD) lasers are expected to have superior properties over conventional quantum well lasers due to a delta-function like density of states resulting from three dimensional quantum confinements. QD lasers can only be realized till significant improvements in uniformity of QDs with free of defects and increasing QD density as well in recent years. In this paper, we first briefly give a review on the techniques for preparing QDs, and emphasis on strain induced self-organized quantum dot growth. Secondly, self-organized In(Ga)As/GaAs, InAlAs/GaAlAs and InAs/InAlAs Qds grown on both GaAs and InP substrates with different orientations by using MBE and the Stranski-Krastanow (SK) growth mode at our labs are presented. Under optimizing the growth conditions such as growth temperature, V/III ratio, the amount of InAs, InxGa1-xAs, InxAl1-xAs coverage, the composition x etc., controlling the thickness of the strained layers, for example, just slightly larger than the critical thickness and choosing the substrate orientation or patterned substrates as well, the sheet density of ODs can reach as high as 10(11) cm(-2), and the dot size distribution is controlled to be less than 10% (see Fig. 1). Those are very important to obtain the lower threshold current density (J(th)) of the QD Laser. How to improve the dot lateral ordering and the dot vertical alignment for realizing lasing from the ground states of the QDs and further reducing the Jth Of the QD lasers are also described in detail. Thirdly based on the optimization of the band engineering design for QD laser and the structure geometry and growth conditions of QDs, a 1W continuous-wave (cw) laser operation of a single composite sheet or vertically coupled In(Ga)As quantum dots in a GaAs matrix (see Fig. 2) and a larger than 10W semiconductor laser module consisted nineteen QD laser diodes are demonstrated. The lifetime of the QD laser with an emitting wavelength around 960nm and 0.613W cw operation at room temperature is over than 3000 hrs, at this point the output power was only reduced to 0.83db. This is the best result as we know at moment. Finally the future trends and perspectives of the QD laser are also discussed.
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.
Resumo:
Electron. Manuf. Packag. Technol. Soc. Chin. Inst. Electron.; IEEE Compon., Packag., Manuf. Technol. Soc. (IEEE-CPMT); Xidian University
Resumo:
Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Nickel catalyst supported on carbon was made by reduction of nickelous nitrate with hydrogen at high temperature. Ni/ C catalyst characterization was carried out by XRD. It was found that the crystal phase of NiS and NiS2 appeared in the impregnated catalyst. Ni/ C and Pt/ C catalysts gave high performance as the positive and negative electrodes of a sodium polysulfide/ bromine energy storage cell, respectively. The overpotentials of the positive and negative electrodes were investigated. The effect of the electrocatalyst loading and operating temperature on the charge and discharge performance of the cell was investigated. A power density of up to 0.64 W cm(-2) ( V = 1.07 V) was obtained in this energy storage cell. A cell potential efficiency of up to 88.2% was obtained when both charge and discharge current densities were 0.1 A cm(-2).