932 resultados para Heat pump, Solar Energy, Ambient Energy, Evaporator Collector, Collector Efficiency
Resumo:
In green plants, the function of collecting solar energy for photosynthesis is fulfilled by a series of light-harvesting complexes (LHC). The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP), then imported into chloroplasts and assembled into photosynthetic thylakoid membranes. Knowledge about the regulation of the transport processes of LHCP is rather limited. Closely mimicking the in vivo situation, cell-free protein expression system is employed in this dissertation to study the reconstitution of LHCP into artificial membranes. The approach starts merely from the genetic information of the protein, so the difficult and time-consuming procedures of protein expression and purification can be avoided. The LHCP encoding gene from Pisum sativum was cloned into a cell-free compatible vector system and the protein was expressed in wheat germ extracts. Vesicles or pigment-containing vesicles were prepared with either synthetic lipid or purified plant leaf lipid to mimic cell membranes. LHCP was synthesized in wheat germ extract systems with or without supplemented lipids. The addition of either synthetic or purified plant leaf lipid was found to be beneficial to the general productivity of the expression system. The lipid membrane insertion of the LHCP was investigated by radioactive labelling, protease digestion, and centrifugation assays. The LHCP is partially protected against protease digestion; however the protection is independent from the supplemented lipids.
Resumo:
The present PhD thesis exploits the design skills I have been improving since my master thesis research. A brief description of the chapters content follows. Chapter 1: the simulation of a complete frontend is a very complex problem and, in particular, is the basis upon which the prediction of the overall performance of the system is possible. By means of a commercial EM simulation tool and a rigorous nonlinear/EM circuit cosimulation based on the Reciprocity Theorem, the abovementioned prediction can be achieved and exploited for wireless links characterization. This will represent the theoretical basics of the entire present thesis and will be supported by two RF applications. Chapter 2: an extensive dissertation about MagnetoDielectric (MD) materials will be presented, together with their peculiar characteristics as substrates for antenna miniaturization purposes. A designed and tested device for RF onbody applications will be described in detail. Finally, future research will be discussed. Chapter 3: this chapter will deal with the issue regarding the exploitation of renewable energy sources for lowenergy consumption devices. Hence the problem related to the socalled energy harvesting will be tackled and a first attempt to deploy THz solar energy in an innovative way will be presented and discussed. Future research will be proposed as well. Chapter 4: graphene is a very promising material for devices to be exploited in the RF and THz frequency range for a wide range of engineering applications, including those ones marked as the main research goal of the present thesis. This chapter will present the results obtained during my research period at the National Institute for Research and Development in Microtechnologies (IMT) in Bucharest, Romania. It will concern the design and manufacturing of antennas and diodes made in graphenebased technology for detection/rectification purposes.
Resumo:
The aim of this PhD thesis is the investigation of the photophysical properties of materials that can be exploited in solar energy conversion. In this context, my research was mainly focused on carbon nanotube-based materials and ruthenium complexes. The first part of the thesis is devoted to carbon nanotubes (CNT), which have unique physical and chemical properties, whose rational control is of substantial interest to widen their application perspectives in many fields. Our goals were (i) to develop novel procedures for supramolecular dispersion, using amphiphilic block copolymers, (ii) to investigate the photophysics of CNT-based multicomponent hybrids and understand the nature of photoinduced interactions between CNT and selected molecular systems such as porphyrins, fullerenes and oligo (p-phynylenevinylenes). We established a new protocol for the dispersion of SWCNTs in aqueous media via non-covalent interactions and demonstrated that some CNT-based hybrids are suitable for testing in PV devices. The second part of the work is focussed on the study of homoleptic and heteroleptic Ru(II) complexes with bipyridine and extended phenanthroline ligands. Our studies demonstrated that these compounds are potentially useful as light harvesting systems for solar energy conversion. Both CNT materials and Ru(II) complexes have turned out to be remarkable examples of photoactive systems. The morphological and photophysical characterization of CNT-based multicomponent systems allowed a satisfactory rationalization of the photoinduced interactions between the individual units, despite several hurdles related to the intrinsic properties of CNTs that prevent, for instance, the utilization of laser spectroscopic techniques. Overall, this work may prompt the design and development of new functional materials for photovoltaic devices.
Resumo:
This is the seventeenth of a series of symposia devoted to talks by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, and sixteenth were at Kansas State University, the second and fourth were at the University of Nebraska-Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh, tenth, thirteenth, and seventeenth were at Iowa State University, the eighth and fourteenth were at the University of MissouriColumbia, and the eleventh and fifteenth were at Colorado State University. Next year's symposium will be at the University of Colorado. Symposium proceedings are edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover work in progress. ContentsThe Effect of Polymer Dosage Conditions on the Properties of ProteinPolyelectrolyte Precipitates, K. H. Clark and C. E. Glatz, Iowa State University An Immobilized Enzyme Reactor/Separator for the Hydrolysis of Casein by Subtilisin Carlsberg, A. J. Bream, R. A. Yoshisato, and G. R. Carmichael, University of Iowa Cell Density Measurements in Hollow Fiber Bioreactors, Thomas Blute, Colorado State University The Hydrodynamics in an Air-Lift Reactor, Peter Sohn, George Y. Preckshot, and Rakesh K. Bajpai, University of MissouriColumbia Local Liquid Velocity Measurements in a Split Cylinder Airlift Column, G. Travis Jones, Kansas State University Fluidized Bed Solid Substrate Trichoderma reesei Fermentation, S. Adisasmito, H. N. Karim, and R. P. Tengerdy, Colorado State University The Effect of 2,4-D Concentration on the Growth of Streptanthus tortuosis Cells in Shake Flask and Air-Lift Permenter Culture, I. C. Kong, R. D. Sjolund, and R. A. Yoshisato, University of Iowa Protein Engineering of Aspergillus niger Glucoamylase, Michael R. Sierks, Iowa State University Structured Kinetic Modeling of Hybidoma Growth and Monoclonal Antibody Production in Suspension Cultures, Brian C. Batt and Dhinakar S. Kampala, University of Colorado Modelling and Control of a Zymomonas mobilis Fermentation, John F. Kramer, M. N. Karim, and J. Linden, Colorado State University Modeling of Brettanomyces clausenii Fermentation on Mixtures of Glucose and Cellobiose, Max T. Bynum and Dhinakar S. Kampala, University of Colorado, Karel Grohmann and Charles E. Yyman, Solar Energy Research Institute Master Equation Modeling and Monte Carlo Simulation of Predator-Prey Interactions, R. 0. Fox, Y. Y. Huang, and L. T. Fan, Kansas State University Kinetics and Equilibria of Condensation Reactions Between Two Different Monosaccharides Catalyzed by Aspergillus niger Glucoamylase, Sabine Pestlin, Iowa State University Biodegradation of Metalworking Fluids, S. M. Lee, Ayush Gupta, L. E. Erickson, and L. T. Fan, Kansas State University Redox Potential, Toxicity and Oscillations in Solvent Fermentations, Kim Joong, Rakesh Bajpai, and Eugene L. Iannotti, University of MissouriColumbia Using Structured Kinetic Models for Analyzing Instability in Recombinant Bacterial Cultures, William E. Bentley and Dhinakar S. Kompala, University of Colorado
Resumo:
Se propone estudiar la problemtica de los pobladores del desierto del noreste de Mendoza, dedicados a la cra de caprinos, en el afn por interpretar y transformar la realidad de estos pobladores. Incluye metodologas interdisciplinarias de proyectos referidos a: profundizacin del conocimiento de la problemtica socio-ambiental y de las necesidades y aspiraciones de los pobladores, cuantificacin de la oferta forrajera y su incremento, posibilidades de revegetacin con gramneas peretines nativas, uso adecuado de los bosques de algarrobo, produccin caprina diversificada, implementacin de huertas familiares y la produccin local de energia elctrica, a partir de energa solar. Los pobladores viven en puestos aislados y por lo general carecen de energa elctrica, agua potable y tecnologas apropiadas. Existen problemas de salud con caractersticas propias, entre ellos patologas orales que son evaluadas y atendidas para lograr la sustentabilidad de la salud bucal. Se contempla una participacin interactiva, en la cual la comunidad comparte el anlisis, las decisiones y el desarrollo de las acciones.
Resumo:
Complex investigations of recent and ancient Black Sea sediments from the outer shelf, continental slope, and deep-water basin of the Russian Black Sea sector have been carried out. Samples were collected during Cruise 100 of R/V Professor Shtokman organized by the P.P. Shirshov Institute of Oceanology (March 2009) and expedition of UZHMORGEO (summer 2006). Rates of the main anaerobic processes during diagenesis (sulfate reduction, dark CO2 assimilation, methanogenesis, and methane oxidation) were studied for the first time in sediment cores of the studied area. Two peaks in the rate of microbial processes and two sources of these processes were identified: the upper peak near the water-sediment contact is related to solar energy (OM substrate of the water column) and the lower peak at the base of ancient Black Sea sediments with high(>1 mmol) methane concentration related to energy of anaerobic methane oxidation. New labile OM formed during this process is utilized by other groups of microorganisms. According to experimental data, daily rate of anaerobic methane oxidation is many times higher than that of methanogenesis, which unambiguously indicates migration nature of the main part of methane.
Resumo:
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.
Resumo:
This paper presents a simple mathematical model to estimateshadinglosses on PVarrays. The model is applied directly to power calculations, without the need to consider the whole currentvoltage curve. This allows the model to be used with common yield estimation software. The model takes into account both the shaded fraction of the array area and the number of blocks (a group of solar cells protected by a bypass diode) affected by shade. The results of an experimental testing campaign on several shaded PVarrays to check the validity of model are also reported.
Resumo:
The main objective of this paper is to review the state of the art of residential PV systems in France and Belgium. This is done analyzing the operational data of 10650 PV systems (9657 located in France and 993 in Belgium). Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp in France and 852 kWh/kWp in Belgium. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% in France and 78% in Belgium, and the mean Performance Index is 85% in both countries. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer?s datasheet. A brief analysis by PV modules technology has lead to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with Heterojunction with Intrinsic. Thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with Copper Indium (di)Selenide (CIS) modules show a real power that is 16 % lower than their nominal value.
Resumo:
With the rising prices of the retail electricity and the decreasing cost of the PV technology, grid parity with commercial electricity will soon become a reality in Europe. This fact, together with less attractive PV feed-in-tariffs in the near future and incentives to promote self-consumption suggest, that new operation modes for the PV Distributed Generation should be explored; differently from the traditional approach which is only based on maximizing the exported electricity to the grid. The smart metering is experiencing a growth in Europe and the United States but the possibilities of its use are still uncertain, in our system we propose their use to manage the storage and to allow the user to know their electrical power and energy balances. The ADSM has many benefits studied previously but also it has important challenges, in this paper we can observe and ADSM implementation example where we propose a solution to these challenges. In this paper we study the effects of the Active Demand-Side Management (ADSM) and storage systems in the amount of consumed local electrical energy. It has been developed on a prototype of a self-sufficient solar house called MagicBox equipped with grid connection, PV generation, leadacid batteries, controllable appliances and smart metering. We carried out simulations for long-time experiments (yearly studies) and real measures for short and mid-time experiments (daily and weekly studies). Results show the relationship between the electricity flows and the storage capacity, which is not linear and becomes an important design criterion.