985 resultados para Hares, Fossil
Resumo:
The paper describes the principal features of Omnivore, a spark-ignition-based research engine designed to investigate the possibility of true wide-range HCCI operation on a variety of fossil and renewable liquid fuels. The engine project is part-funded jointly by the United Kingdom's Department for the Environment, Food and Rural Affairs (DEFRA) and the Department of the Environment of Northern Ireland (DoENI). The engineering team includes Lotus Engineering, Jaguar Cars, Orbital Corporation and Queen's University Belfast.
Resumo:
This paper is a hybrid starting with an overview and history of biodiesel synthesis and finishing with a description with some of our latest unpublished data. Initially, we examine "green" ways of obtaining biodiesel using ionic liquids, which can have an acidic or basic functionality, and can function both as a solvent and catalyst for the (trans)esterification reaction to obtain biodiesel. Both animal and vegetable resources can be utilized as a resource for (trans)esterification reactions depending on the geographical area. Biodiesel is of great interest because it enables motor vehicle transport using a renewable resource, while reducing the amount of carbon dioxide from fossil fuels being released into the environment.
Resumo:
Background. The assembly of the tree of life has seen significant progress in recent years but algae and protists have been largely overlooked in this effort. Many groups of algae and protists have ancient roots and it is unclear how much data will be required to resolve their phylogenetic relationships for incorporation in the tree of life. The red algae, a group of primary photosynthetic eukaryotes of more than a billion years old, provide the earliest fossil evidence for eukaryotic multicellularity and sexual reproduction. Despite this evolutionary significance, their phylogenetic relationships are understudied. This study aims to infer a comprehensive red algal tree of life at the family level from a supermatrix containing data mined from GenBank. We aim to locate remaining regions of low support in the topology, evaluate their causes and estimate the amount of data required to resolve them. Results. Phylogenetic analysis of a supermatrix of 14 loci and 98 red algal families yielded the most complete red algal tree of life to date. Visualization of statistical support showed the presence of five poorly supported regions. Causes for low support were identified with statistics about the age of the region, data availability and node density, showing that poor support has different origins in different parts of the tree. Parametric simulation experiments yielded optimistic estimates of how much data will be needed to resolve the poorly supported regions (ca. 103 to ca. 104 nucleotides for the different regions). Nonparametric simulations gave a markedly more pessimistic image, some regions requiring more than 2.8 105 nucleotides or not achieving the desired level of support at all. The discrepancies between parametric and nonparametric simulations are discussed in light of our dataset and known attributes of both approaches. Conclusions. Our study takes the red algae one step closer to meaningful inclusion in the tree of life. In addition to the recovery of stable relationships, the recognition of five regions in need of further study is a significant outcome of this work. Based on our analyses of current availability and future requirements of data, we make clear recommendations for forthcoming research.
Resumo:
Specimens of the polyplacophoran mollusk 'Helminthochiton' thraivensis Reed from the Upper Ordovician of southwest Scotland provide rare examples of complete valve series preserved in near life position, albeit as external molds. Application of high-resolution X-ray microtomography to one such specimen has revealed the exceptional preservation of its last meal, which included elements of a crinoid column, in its intestine. The interaction was either predatory or scavenging; extant chitons are not known to be crinoidivorous. This is the earliest direct record of predation or scavenging on crinoids in the fossil record. It is also the first indication that the broad axial canal of primitive crinoids may have contained nutritious tissues. The predatory or scavenging habit of H. thraivensis is consistent with its inferred phylogenetic position as a stem-group aplacophoran and provides new data suggesting an origin of carnivory early in the evolution of this clade.
Resumo:
Anew species of fossil polyplacophoran from the Danian (Lower Palaeocene) of Denmark is described from over 450 individual disarticulated plates. The polyplacophorans originate from the 'nose-chalk' in the classical Danish locality of Fakse Quarry, an unconsolidated coral limestone in which aragonitic mollusc shells are preserved through transformation into calcite. In plate architecture and sculpture, the new Danish material is similar to Recent Leptochiton spp., but differs in its underdeveloped apophyses and high dorsal elevation (height/width ca. 0.54). Cladistic analysis of 55 original shell characters coded for more than loo Recent and fossil species in the order Lepiclopleurida shows very high resolution of interspecific relationships, but does not consistently recover traditional genera or subgenera. Inter-relationships within the suborder Lepidopleurina are of particular interest as it is often considered the most 'basal' neoloricate lineage. In a local context, the presence of chitons in the faunal assemblage of Fakse contributes evidence of shallow depositional depth for at least some elements of this Palaeocene seabed, a well-studied formation of azooxanthellic coral limestones. This new record for Denmark represents a well-dated and ecologically well-understood fossil chiton with potential value for understanding the radiation of the Neotoricata.
Resumo:
The position of the earliest-derived living molluscs, the Polyplacophora ( chitons) and shell-less vermiform Aplacophora, remains highly contentious despite many morphological, developmental and molecular studies of extant organisms. These two groups are thought to represent either a basal molluscan grade or a clade (Aculifera) sister to the 'higher' molluscs (Conchifera). These incompatible hypotheses result in very different predictions about the earliest molluscs. A new cladistic analysis incorporating both Palaeozoic and extant molluscs is presented here. Our results support the monophyly of Aculifera and suggest that extant aplacophorans and polyplacophorans both derive from a disparate group of multivalved molluscs in two major clades. Reanalysis of the critical Ordovician taxon 'Helminthochiton' thraivensis shows that this animal lacks a true foot despite bearing polyplacophoran-like valves. Its position within our phylogenetic reconstruction indicates that many fossil 'polyplacophorans' in the order Palaeoloricata are likely to represent footless stem-group aplacophorans. 'H.' thraivensis and similar forms such as Acaenoplax may be morphological stepping stones between chitons and the shell-less aplacophorans. Our results imply that crown-group molluscan synapomorphies include serial repetition, the presence of a foot, a mineralized scleritome and a creeping rather than worm-like mode of life.
Resumo:
Chitons are often referred to as “living fossils” in part because they are proposed as one of the earliest-diverging groups of living molluscs, but also because the gross morphology of the polyplacophoran shell has been conserved for hundreds of millions of years. As such, the analysis of evolution and radiation within polyplacophorans is of considerable interest not only for resolving the shape of pan-molluscan phylogeny but also as model organisms for the study of character evolution. This study presents a new, rigorous cladistic analysis of the morphological characters used in taxonomic descriptions for chitons in the living suborder Lepidopleurina Thiele, 1910 (the earliest-derived living group of chitons). Shell-based characters alone entirely fail to recover any recognized subdivisions within the group, which may raise serious questions about the application of fossil data (from isolated shell valves). New analysis including characters from girdle armature and gill arrangements recovers some genera within the group but also points to the lack of monophyly within the main genus Leptochiton Gray, 1847. Additional characters from molecular data and soft anatomy, used in combination, are clearly needed to resolve questions of chiton relationships. However, the data sets currently available already provide interesting insights into the analytical power of traditional morphology as well as some knowledge about the early evolution and radiation of this group.
Resumo:
Tuning is a widespread technique to combine, date and interpret multiple fossil proxy archives through aligning supposedly synchronous events between the archives. The approach will be reviewed by discussing a number of literature examples, ranging from peat and tephra layers to orbital tuning and d18O series from marine and ice deposits. Potential problems will be highlighted such as the dangers of circular reasoning and unrecognised chronological uncertainties, and some solutions suggested. Fossil proxy research could become enhanced if tuning were approached in a more quantitative, reliable and objective way, and especially if individual proxy archives were non-tuned and kept on independent time-scales.
Resumo:
Dubai, the second largest city of the United Arab Emirates, is a fast growing hub with increasing need for infrastructure, housing and public facilities. Dubai is trying to market itself as an attractive holiday destination, which saw the launching and building of large scale planned communities, some of which are located on reclaimed land along the city's coast line. This paper reviews Dubai\'s green building agenda by examining the scale and typologies of new and planned low carbon projects, and discusses the potential of renewable sources of energy that can reduce the country's dependence on fossil fuels and improve the country's long term sustainability. It assesses the potential of solar energy, wind power, and geo-thermal energy in Dubai and the UAE in general.
Resumo:
The growth of renewable power sources, distributed generation and the potential for alternative fuelled modes of transport such as electric vehicles has led to concerns over the ability of existing grid systems to facilitate such diverse portfolio mixes in already congested power systems. Internationally the growth in renewable energy sources is driven by government policy targets associated with the uncertainties of fossil fuel supplies, environmental issues and a move towards energy independence. Power grids were traditionally designed as vertically integrated centrally managed entities with fully dispatchable generating plant. Renewable power sources, distributed generation and alternative fuelled vehicles will place these power systems under additional stresses and strains due to their different operational characteristics. Energy storage and smart grid technologies are widely proposed as the tools to integrate these future diverse portfolio mixes within the more conventional power systems. The choice in these technologies is determined not only by their location on the grid system, but by the diversification in the power portfolio mix, the electricity market and the operational demands. This paper presents a high level technical and economic overview of the role and relevance of electrical energy storage and smart grid technologies in the next generation of renewable power systems.
Resumo:
The European Union has set a target for 10% renewable energy in transport by 2020, which will be met using both biofuels and electric vehicles. In the case of biofuels, for the purposes of meeting the target, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis, or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas savings. This paper examines different electric-vehicle scenarios in terms of greenhouse gas savings, using a well-to-wheel life cycle analysis.
Resumo:
Dwindling fossil fuel resources and pressures to reduce greenhouse gas (GHG) emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is that supply instantaneously meets demand and that robust operating standards are maintained to ensure a consistent supply of high quality electricity to end-users. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management (DSM) with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating (EWH) has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper, a continuous Direct Load Control (DLC) EWH algorithm is applied in a liberalized market environment using actual historical electricity system and market data to examine the potential energy savings, cost reductions and electricity system operational improvements.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to bene?t end-users ?nancially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system bene?ts. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.
Resumo:
The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.