931 resultados para HIPPOCAMPAL SCLEROSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many cell types rises in cytosolic calcium, either due to influx from the extracellular space, or by release from an intracellular store activates calcium dependent potassium currents on the plasmalemma. In neurons, these currents are largely activated following calcium influx via voltage gated calcium channels active during the action potentials. Three types of these currents are known: I-c. I-AHP and I-sAHP. These currents can be distinguished by clear differences in their pharmacology and kinetics. Activation of these potassium currents modulates action potential time course and the repetitive firing properties of neurons. Single channel studies have identified two types of calcium-activated potassium channel which can also be separated on biophysical and pharmacological grounds and have been named BK and SK channels. It is now clear that BK channels underlie Ic whereas SK channels underlie I-AHP. The identity of the channels underlying I-sAHP are not known. In this review, we discuss the properties of the different types of calcium-activated potassium channels and the relationship between these channels and the macroscopic currents present in neurons. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously showed that 16-day-old rats exposed to a relatively high dose of ethanol at 10-15 postnatal days of age have fewer neurons in the hilus region of the hippocampus compared with controls. Dentate gyrus granule cell numbers, however, showed no statistically significant changes attributable to the ethanol treatment. It is possible that some of the changes in brain morphology, brought about as a result of the exposure to ethanol during early life, may not be manifested until later in life. This question has been further addressed in an extension to our previous study. Wistar rats were exposed to a relatively high daily dose of ethanol on postnatal days 10-15 by placement in a chamber containing ethanol vapour, for 3 h/day. The blood ethanol concentration was found to be similar to430 mg/dl at the end of the period of exposure. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anaesthetised and killed either at 16 or 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle and the physical disector methods were used to estimate, respectively, the regional volumes and neuron cell numerical densities in the hilus and granule cell regions of the dentate gyrus. The total numbers of neurons in the hilus region and granule cell layer were computed from these estimates. It was found that 16-day-old animals had 398,000-441,000 granule cells, irrespective of group. The numbers of granule cells increased such that by 30 days of age, rats had 487,000-525,500 granule cells. However, there were no significant differences between ethanol-treated rats and their age-matched controls in granule cell numbers. In contrast, ethanol-treated rats had slightly but significantly fewer neurons in the hilus region than did control animals at 16 days of age, but not at 30 days of age. Therefore, it appears that a short period of ethanol exposure during early life can have effects on neuron numbers of some hippocampal neurons, but not others. The effects on hilar neuron numbers, observed as a result of such short periods of ethanol treatment, appeared to be transitory. (C) 2003 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amygdala plays a major role in the acquisition and expression of fear conditioning. NMDA receptor-dependent synaptic plasticity within the basolateral amygdala has been proposed to underlie the acquisition and possible storage of fear memories. Here the properties of fast glutamatergic transmission in the lateral and central nuclei of the amygdala are presented. In the lateral amygdala, two types of neurons, interneurons and projection neurons, could be distinguished by their different firing properties. Glutamatergic inputs to interneurons activated AMPA receptors with inwardly rectifying current-voltage relations (I-Vs), whereas inputs to projection neurons activated receptors that had linear I-Vs, indicating that receptors on interneurons lack GluR2 subunits. Inputs to projection neurons formed dual component synapses with both AMPA and NMDA components, whereas at inputs to interneurons, the contribution of NMDA receptors was very small. Neurons in the central amygdala received dual component glutamatergic inputs that activated AMPA receptors with linear I-Vs. NMDA receptor-mediated EPSCs had slow decay time constants in the central nucleus. Application of NR2B selective blockers ifenprodil or CP-101,606 blocked NMDA EPSCs by 70% in the central nucleus, but only by 30% in the lateral nucleus. These data show that the distribution of glutamatergic receptors on amygdalar neurons is not uniform. In the lateral amygdala, interneurons and pyramidal neurons express AMPA receptors with different subunit compositions. Synapses in the central nucleus activate NMDA receptors that contain NR1 and NR2B subunits, whereas synapses in the lateral nucleus contain receptors with both NR2A and NR2B subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors are thought to be multimers that contain either NR1/NR2A or NR1/NR2A/NR2B subunits, whereas receptors that contain only NR1/NR2B subunits are extrasynaptic. Here, we have studied the properties of NMDA receptors at glutamatergic synapses in the lateral and central amygdala. We find that NMDA receptor-mediated synaptic currents in the central amygdala in both immature and mature synapses have slow kinetics and are substantially blocked by the NR2B-selective antagonists (1S, 2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propano and ifenprodil, indicating that there is no developmental change in subunit composition. In contrast, at synapses on pyramidal neurons in the lateral amygdala, whereas NMDA EPSCs at immature synapses are slow and blocked by NR2B-selective antagonists, at mature synapses their kinetics are faster and markedly less sensitive to NR2B-selective antagonists, consistent with a change from NR2B to NR2A subunits. Using real-time PCR and Western blotting, we show that in adults the ratio of levels of NR2B to NR2A subunits is greater in the central amygdala than in the lateral amygdala. These results show that the subunit composition synaptic NMDA receptors in the lateral and central amygdala undergo distinct developmental changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life can result in an alteration in spatial learning ability. The hippocampal formation is known to be involved in the control of this ability. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life had either immediate or delayed effects on the numbers of pyramidal cells in the CA1-CA3 subregion of the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol at postnatal day 10-15 by placing them for 3 h/day in a chamber containing ethanol vapor. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anesthetized and killed at 16 and 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volumes of the CA1 and CA2+CA3 regions. The physical disector method was used to estimate the numerical density of neurons in each of the subdivisions. The total number of pyramidal cells was calculated by multiplying the appropriate estimates of the numerical density by the volume. There were significant age-related reductions in the total numbers of pyramidal cells at 16-30 days of age irrespective of the groups examined. Ethanol treated rats were found to have slightly but significantly fewer pyramidal cell neurons than either the MRC or SC groups. These observations indicate that pyramidal cells in the hippocampus may be vulnerable to a relatively high dose of ethanol exposure during this short period of early postnatal life. (C) 2003 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using whole cell recordings from acute slices of the rat amygdala, we have examined the physiological properties of and synaptic connectivity to neurons in the lateral sector of the central amygdala (CeA). Based on their response to depolarizing current injections, CeA neurons could be divided into three types. Adapting neurons fired action potentials at the start of the current injections at high frequency and then showed complete spike-frequency adaptation with only six to seven action potentials evoked with suprathreshold current injections. Late-firing neurons fired action potentials with a prolonged delay at threshold but then discharged continuously with larger current injections. Repetitive firers discharged at the start of the current injection at threshold and then discharged continuously with larger current injections. All three cells showed prolonged afterhyperpolarizations (AHPs) that followed trains of action potentials. The AHP was longer lasting with a larger slow component in adapting neurons. The AHP in all cell types contained a fast component that was inhibited by the SK channel blocker UCL1848. The slow component, not blocked by UCL1848, was blocked by isoprenaline and was significantly larger in adapting neurons. Blockade of SK channels increased the discharge frequency in late firers and regular-spiking neurons but had no effect on adapting neurons. Blockade of the slow AHP with isoprenaline had no effect on any cell type. All cells received a mixed glutamatergic and GABAergic input from a medial pathway. Electrical stimulation of the lateral (LA) and basolateral (BLA)nuclei evoked a large monosynaptic glutamatergic response followed by a disynaptic inhibitory postsynaptic potential. Activation of neurons in the LA and BLA by puffer application of glutamate evoked a small monosynaptic response in 13 of 55 CeA neurons. Local application of glutamate to the CeL evoked a GABAergic response in all cells. These results show that at least three types of neurons are present in the CeA that can be distinguished on their firing properties. The firing frequency of two of these cell types is determined by activation of SK channels. Cells receive a small input from the LA and BLA but may receive inputs that course through these nuclei en route to the CeA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of this work was to investigate the effects of postnatal protein malnutrition on learning and memory tasks. Previously malnourished (6% protein) and well-nourished rats (16% protein) were tested in three experiments: working memory tasks in the Morris water maze (Experiment I), recognition memory of objects (Experiment II), and working memory in the water T-maze (Experiment III). The results showed higher escape latencies in malnourished animals in Experiment I, lower recognition indexes of malnourished animals in Experiment II, and no differences due to diet in Experiment III. It is suggested that protein malnutrition imposed on early life of rats can produce impairments on both working memory in the Morris maze and recognition memory in the open field tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed to evaluate the effects of social separation for 14 days (chronic stress) and of withdrawal from a 14-day treatment with diazepam (acute stress) on the exploratory behaviour of male rats in the elevated plus-maze and on serotonin (5-hydroxytryptamine) turnover in different brain structures. Social separation had an anxiogenic effect, evidenced by fewer entries into, and less time spent on the open arms of the elevated plus-maze. Separation also selectively increased 5-hydroxytryptamine turnover in the hippocampus and median raphe nucleus. Diazepam withdrawal had a similar anxiogenic effect in grouped animals and increased 5-hydroxytryptamine turnover in the same brain structures. Chronic treatment with imipramine during the 14 days of separation prevented the behavioural and neurochemical changes caused by social separation. It is suggested that the increase in anxiety determined by both acute and chronic stress is mediated by the activation of the median raphe nucleus-hippocampal 5-hydroxytryptamine pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Subcallosal cingulate gyrus (SCG) deep brain stimulation (DBS) is being investigated as a treatment for major depression. We report on the effects of ventromedial prefrontal cortex (vmPFC) DBS in rats, focusing on possible mechanisms involved in an antidepressant-like response in the forced swim test (FST). Methods: The outcome of vmPFC stimulation alone or combined with different types of lesions, including serotonin (5-HT) or nore-pineprhine (NE) depletion, was characterized in the FST. We also explored the effects of DBS on novelty-suppressed feeding, learned helplessness, and sucrose consumption in animals predisposed to helplessness. Results: Stimulation at parameters approximating those used in clinical practice induced a significant antidepressant-like response in the FST. Ventromedial PFC lesions or local muscimol injections did not lead to a similar outcome. However, animals treated with vmPFC ibotenic acid lesions still responded to DBS, suggesting that the modulation of fiber near the electrodes could play a role in the antidepressant-like effects of stimulation. Also important was the integrity of the serotonergic system, as the effects of DBS in the FST were completely abolished in animals bearing 5-HT, but not NE, depleting lesions. In addition, vmPFC stimulation induced a sustained increase in hippocampal 5-HT levels. Preliminary work with other models showed that DBS was also able to influence specific aspects of depressive-like states in rodents, including anxiety and anhedonia, but not helplessness. Conclusions: Our study suggests that vmPFC DES in rats maybe useful to investigate mechanisms involved in the antidepressant effects of SCG DBS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the literature, psychosis of epilepsy (POE) has been described as one of the most frequent psychiatric comorbidities of epilepsy, occurring particularly in association with temporal lobe epilepsy. However, the presence of such psychiatric disorders among patients with idiopathic generalized epilepsies has also been mentioned. In this study, we evaluated the clinical features of psychotic disorders in a series of patients with temporal lobe epilepsy related to mesial temporal sclerosis (TLE-MTS) and juvenile myoclonic epilepsy with the aim of describing and comparing the clinical patterns of the psychotic symptoms in such frequent and important epilepsy syndromes. POE occurred most frequently in patients with TLE-MTS (P=0.01), but no differences were observed between the groups with respect to the subtypes and core symptoms of psychoses. The clinical implications of POE in both epilepsy syndromes are discussed. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aortic valve calcium (AVC) can be quantified on the same computed tomographic scan as coronary artery calcium (CAC). Although CAC is an established predictor of cardiovascular events, limited evidence is available for an independent predictive value for AVC. We studied a cohort of 8,401 asymptomatic subjects (mean age 53 10 years, 69% men), who were free of known coronary heart disease and were undergoing electron beam computed tomography for assessment of subclinical atherosclerosis. The patients were followed for a median of 5 years (range 1 to 7) for the occurrence of mortality from any cause. Multivariate Cox regression models were developed to predict all-cause mortality according to the presence of AVC. A total of 517 patients (6%) had AVC on electron beam computed tomography. During follow-up, 124 patients died (1.5%), for an overall survival rate of 96.1% and 98.7% for those with and without AVC, respectively (hazard ratio 3.39, 95% confidence interval 2.09 to 5.49). After adjustment for age, gender, hypertension, dyslipidemia, diabetes mellitus, smoking, and a family history of premature coronary heart disease, AVC remained a significant predictor of mortality (hazard ratio 1.82, 95% confidence interval 1.11 to 2.98). Likelihood ratio chi-square statistics demonstrated that the addition of AVC contributed significantly to the prediction of mortality in a model adjusted for traditional risk factors (chi-square = 5.03, p = 0.03) as well as traditional risk factors plus the presence of CAC (chi-square = 3.58, p = 0.05). In conclusion, AVC was associated with increased all-cause mortality, independent of the traditional risk factors and the presence of CAC. (C) 2010 Published by Elsevier Inc. (Am J Cardiol 2010;106:1787-1791)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission. (C) 1997 Elsevier Science Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To define the role of magnetization transfer imaging (MTI) in detecting subclinical central nervous system (CNS) lesions in primary antiphospholipid syndrome (PAPS). Materials and Methods: Ten non-CNS PAPS patients were compared to 10 CNS PAPS patients and 10 age- and sex-matched controls. All PAPS patients met Sapporo criteria. All Subjects underwent conventional MRI and complementary MTI analysis to compose histograms. CNS viability was determined according to the magnetization transfer ratio (MTR) by mean pixel intensity (MPI) and the mean peak height (MPH). Volumetric cerebral measurements were assessed by brain parenchyma factor (BPF) and total/cerebral volume. Results: MTR histograms analysis revealed that MPI was significantly different among groups (P < 0.0001). Non-CNS PAPS had a higher MPI than CNS PAPS, (30.5 +/- 1.01 vs. 25.1 +/- 3.17 percent unit (pu); P < 0.05) although lower than controls (30.5 +/- 1.01 vs. 31.20 < 0.50 pu; P < 0.05). MPH in non-CNS PAPS (5.57 +/- 0.20% (1/pu)} was similar to controls (5.63 +/- 0.20% (1/pu), P > 0.05) and higher than CNS PAPS (4.71 +/- 0.30% (1/pu), P < 0.05). A higher peak location (PL) was also observed in the CNS PAPS group in comparison with the other groups (P < 0.0001). In addition, a lower BPF was found in non-CNS PAPS compared to controls (0.80 +/- 0.03 vs. 0.84 +/- 0.02 units; P < 0.05) but similar to CNS PAPS (0.80 +/- 0.03 vs. 0.79 +/- 0.05 units; P > 0.05). Conclusion: Our findings suggest that non-CNS PAPS patients have subclinical cerebral damage. The long-term-clinical relevance of MTI analysis in these patients needs to be defined by prospective studies.