948 resultados para Ginzburg-Landau-Langevin equations
Resumo:
We prove the equivalence of three weak formulations of the steady water waves equations, namely: the velocity formulation, the stream function formulation and the Dubreil-Jacotin formulation, under weak Hölder regularity assumptions on their solutions.
Resumo:
This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.
Resumo:
We consider the time-harmonic Maxwell equations with constant coefficients in a bounded, uniformly star-shaped polyhedron. We prove wavenumber-explicit norm bounds for weak solutions. This result is pivotal for convergence proofs in numerical analysis and may be a tool in the analysis of electromagnetic boundary integral operators.
Resumo:
In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.
Resumo:
A recent paper published in this journal considers the numerical integration of the shallow-water equations using the leapfrog time-stepping scheme [Sun Wen-Yih, Sun Oliver MT. A modified leapfrog scheme for shallow water equations. Comput Fluids 2011;52:69–72]. The authors of that paper propose using the time-averaged height in the numerical calculation of the pressure-gradient force, instead of the instantaneous height at the middle time step. The authors show that this modification doubles the maximum Courant number (and hence the maximum time step) at which the integrations are stable, doubling the computational efficiency. Unfortunately, the pressure-averaging technique proposed by the authors is not original. It was devised and published by Shuman [5] and has been widely used in the atmosphere and ocean modelling community for over 40 years.
Resumo:
It is shown here that the angular relation equations between direct and reciprocal vectors are very similar to the angular relation equations in Euler's theorem. These two sets of equations are usually treated separately as unrelated equations in different fields. In this careful study, the connection between the two sets of angular equations is revealed by considering the cosine rule for the spherical triangle. It is found that understanding of the correlation is hindered by the facts that the same variables are defined differently and different symbols are used to represent them in the two fields. Understanding the connection between different concepts is not only stimulating and beneficial, but also a fundamental tool in innovation and research, and has historical significance. The background of the work presented here contains elements of many scientific disciplines. This work illustrates the common ground of two theories usually considered separately and is therefore of benefit not only for its own sake but also to illustrate a general principle that a theory relevant to one discipline can often be used in another. The paper works with chemistry related concepts using mathematical methodologies unfamiliar to the usual audience of mainstream experimental and theoretical chemists.