953 resultados para Geometric mean radius
Resumo:
PURPOSE: To develop a mathematical model that can predict refractive changes after Descemet stripping endothelial keratoplasty (DSEK). METHODS: A mathematical formula based on the Gullstrand eye model was generated to estimate the change in refractive power of the eye after DSEK. This model was applied to four DSEK cases retrospectively, to compare measured and predicted refractive changes after DSEK. RESULTS: The refractive change after DSEK is determined by calculating the difference in the power of the eye before and after DSEK surgery. The power of the eye post-DSEK surgery can be calculated with modified Gullstrand eye model equations that incorporate the change in the posterior radius of curvature and change in the distance between the principal planes of the cornea and lens after DSEK. Analysis of this model suggests that the ratio of central to peripheral graft thickness (CP ratio) and central thickness can have significant effect on refractive change where smaller CP ratios and larger graft thicknesses result in larger hyperopic shifts. This model was applied to four patients, and the average predicted hyperopic shift in the overall power of the eye was calculated to be 0.83 D. This change reflected in a mean of 93% (range, 75%-110%) of patients' measured refractive shifts. CONCLUSIONS: This simplified DSEK mathematical model can be used as a first step for estimating the hyperopic shift after DSEK. Further studies are necessary to refine the validity of this model.
Resumo:
On-board image guidance, such as cone-beam CT (CBCT) and kV/MV 2D imaging, is essential in many radiation therapy procedures, such as intensity modulated radiotherapy (IMRT) and stereotactic body radiation therapy (SBRT). These imaging techniques provide predominantly anatomical information for treatment planning and target localization. Recently, studies have shown that treatment planning based on functional and molecular information about the tumor and surrounding tissue could potentially improve the effectiveness of radiation therapy. However, current on-board imaging systems are limited in their functional and molecular imaging capability. Single Photon Emission Computed Tomography (SPECT) is a candidate to achieve on-board functional and molecular imaging. Traditional SPECT systems typically take 20 minutes or more for a scan, which is too long for on-board imaging. A robotic multi-pinhole SPECT system was proposed in this dissertation to provide shorter imaging time by using a robotic arm to maneuver the multi-pinhole SPECT system around the patient in position for radiation therapy.
A 49-pinhole collimated SPECT detector and its shielding were designed and simulated in this work using the computer-aided design (CAD) software. The trajectories of robotic arm about the patient, treatment table and gantry in the radiation therapy room and several detector assemblies such as parallel holes, single pinhole and 49 pinholes collimated detector were investigated. The rail mounted system was designed to enable a full range of detector positions and orientations to various crucial treatment sites including head and torso, while avoiding collision with linear accelerator (LINAC), patient table and patient.
An alignment method was developed in this work to calibrate the on-board robotic SPECT to the LINAC coordinate frame and to the coordinate frames of other on-board imaging systems such as CBCT. This alignment method utilizes line sources and one pinhole projection of these line sources. The model consists of multiple alignment parameters which maps line sources in 3-dimensional (3D) space to their 2-dimensional (2D) projections on the SPECT detector. Computer-simulation studies and experimental evaluations were performed as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise and acquisition geometry. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, the six alignment parameters (3 translational and 3 rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by Radon transform, the estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution and detector acquisition geometry. The estimation accuracy was significantly improved by using 4 line sources rather than 3 and also by using thinner line-source projections (obtained by better intrinsic detector resolution). With 5 line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.
Simulation studies were performed to investigate the improvement of imaging sensitivity and accuracy of hot sphere localization for breast imaging of patients in prone position. A 3D XCAT phantom was simulated in the prone position with nine hot spheres of 10 mm diameter added in the left breast. A no-treatment-table case and two commercial prone breast boards, 7 and 24 cm thick, were simulated. Different pinhole focal lengths were assessed for root-mean-square-error (RMSE). The pinhole focal lengths resulting in the lowest RMSE values were 12 cm, 18 cm and 21 cm for no table, thin board, and thick board, respectively. In both no table and thin board cases, all 9 hot spheres were easily visualized above background with 4-minute scans utilizing the 49-pinhole SPECT system while seven of nine hot spheres were visible with the thick board. In comparison with parallel-hole system, our 49-pinhole system shows reduction in noise and bias under these simulation cases. These results correspond to smaller radii of rotation for no-table case and thinner prone board. Similarly, localization accuracy with the 49-pinhole system was significantly better than with the parallel-hole system for both the thin and thick prone boards. Median localization errors for the 49-pinhole system with the thin board were less than 3 mm for 5 of 9 hot spheres, and less than 6 mm for the other 4 hot spheres. Median localization errors of 49-pinhole system with the thick board were less than 4 mm for 5 of 9 hot spheres, and less than 8 mm for the other 4 hot spheres.
Besides prone breast imaging, respiratory-gated region-of-interest (ROI) imaging of lung tumor was also investigated. A simulation study was conducted on the potential of multi-pinhole, region-of-interest (ROI) SPECT to alleviate noise effects associated with respiratory-gated SPECT imaging of the thorax. Two 4D XCAT digital phantoms were constructed, with either a 10 mm or 20 mm diameter tumor added in the right lung. The maximum diaphragm motion was 2 cm (for 10 mm tumor) or 4 cm (for 20 mm tumor) in superior-inferior direction and 1.2 cm in anterior-posterior direction. Projections were simulated with a 4-minute acquisition time (40 seconds per each of 6 gates) using either the ROI SPECT system (49-pinhole) or reference single and dual conventional broad cross-section, parallel-hole collimated SPECT. The SPECT images were reconstructed using OSEM with up to 6 iterations. Images were evaluated as a function of gate by profiles, noise versus bias curves, and a numerical observer performing a forced-choice localization task. Even for the 20 mm tumor, the 49-pinhole imaging ROI was found sufficient to encompass fully usual clinical ranges of diaphragm motion. Averaged over the 6 gates, noise at iteration 6 of 49-pinhole ROI imaging (10.9 µCi/ml) was approximately comparable to noise at iteration 2 of the two dual and single parallel-hole, broad cross-section systems (12.4 µCi/ml and 13.8 µCi/ml, respectively). Corresponding biases were much lower for the 49-pinhole ROI system (3.8 µCi/ml), versus 6.2 µCi/ml and 6.5 µCi/ml for the dual and single parallel-hole systems, respectively. Median localization errors averaged over 6 gates, for the 10 mm and 20 mm tumors respectively, were 1.6 mm and 0.5 mm using the ROI imaging system and 6.6 mm and 2.3 mm using the dual parallel-hole, broad cross-section system. The results demonstrate substantially improved imaging via ROI methods. One important application may be gated imaging of patients in position for radiation therapy.
A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150-L110 robot). An imaging study was performed with a phantom (PET CT Phantom
In conclusion, the proposed on-board robotic SPECT can be aligned to LINAC/CBCT with a single pinhole projection of the line-source phantom. Alignment parameters can be estimated using one pinhole projection of line sources. This alignment method may be important for multi-pinhole SPECT, where relative pinhole alignment may vary during rotation. For single pinhole and multi-pinhole SPECT imaging onboard radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. In simulation studies of prone breast imaging and respiratory-gated lung imaging, the 49-pinhole detector showed better tumor contrast recovery and localization in a 4-minute scan compared to parallel-hole detector. On-board SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.
Resumo:
Animal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal "agility" with a single determinant of rotational sensitivity: the mean canal radius of curvature (R). In fact, the paired variables of R and body mass are correlated with agility and have been used to infer locomotion in extinct species. To refine models of canal functional morphology and to improve locomotor inferences for extinct species, we compare 3D vector measurements of head rotation during locomotion with 3D vector measures of canal sensitivity. Contrary to the predictions of conventional models that are based upon R, we find that axes of rapid head rotation are not aligned with axes of either high or low sensitivity. Instead, animals with fast head rotations have similar sensitivities in all directions, which they achieve by orienting the three canals of each ear orthogonally (i.e., along planes at 90° angles to one another). The extent to which the canal configuration approaches orthogonality is correlated with rotational head speed independent of body mass and phylogeny, whereas R is not.
Resumo:
Although some asthmatic children seem to recover from their asthma, 30–80% develop asthma again in later life. The underlying risk factors are unknown. The hypothesis for this study was that children with apparently outgrown asthma would have underlying airway inflammation. Nonbronchoscopic bronchoalveolar lavage was performed on normal children (n=35) and children who had wheezed previously (n=35). Eosinophils were raised in the lavage fluid of atopic children who had apparently outgrown asthma (median (interquartile range) 0.36 (0.05–0.74) compared to controls 0.10 (0–0.18), p=0.002). There was no relationship between length of remission and degree of airways eosinophilia. Thus, there is persistent airways inflammation in some children with outgrown asthma and this may be a risk factor for future relapse.
Resumo:
Simultaneous contrast effects have been found across a wide range of visual dimensions. We describe a simultaneous contrast effect - three-dimensional curvature contrast - in which the apparent curvature of a surface defined by shading and texture information is influenced by the curvature of a surrounding surface. The effect is strong and easily measurable. We asked whether the effect depends upon the presence of contrast at the level of the internal representation of surface curvature or whether it could be better explained in terms of local changes in the apparent brightness of regions within the test patches induced by luminance transition at the borders. The experimental results suggest that, whicle these luminance-contrast-induced effects do contribute to the observed changes in perceived curvature, there are additional influences. In particular changes in perceived curvature induced by a pattern of curved patches were eliminated or considerably weakened when the inducing pattern was transformed into a photographic negative, a procedure which disrupts the apparent three-dimensional structure of the surface patches without changing their brightness contrast. This suggests a component of the illusion involves comparisons at the level of representation of surface curvature. The observation that three-dimensional curvature contrast presists when the inducing surfaces are spatially separate from the test surface suggests that shape perception involves global, as well as local, operations.
Resumo:
We have measured the electrical transport properties of mats of single-walled carbon nanotubes (SWNT) as a function of applied electric and magnetic fields. We find that at low temperatures the resistance as a function of temperature R(T) follows the Mott variable range hopping (VRH) formula for hopping in three dimensions. Measurement of the electric field dependence of the resistance R(E) allows for the determination of the Bohr radius of a localized state a = 700nm. The magnetoresistance (MR) of SWNT mat samples is large and negative at all temperatures and fields studied. The low field negative MR is proportional to H2, in agreement with variable range hopping in two or three dimensions. 3D VRH indicates good intertube contacts, implying that the localization is due to the disorder experienced by the individual tubes. The 3D localization radius gives a measure of the ID localization length on the individual tubes, which we estimate to be >700 nm. Implications for the electron-phonon mean free path are discussed.
Resumo:
Long-range dependence in volatility is one of the most prominent examples in financial market research involving universal power laws. Its characterization has recently spurred attempts to provide some explanations of the underlying mechanism. This paper contributes to this recent line of research by analyzing a simple market fraction asset pricing model with two types of traders---fundamentalists who trade on the price deviation from estimated fundamental value and trend followers whose conditional mean and variance of the trend are updated through a geometric learning process. Our analysis shows that agent heterogeneity, risk-adjusted trend chasing through the geometric learning process, and the interplay of noisy fundamental and demand processes and the underlying deterministic dynamics can be the source of power-law distributed fluctuations. In particular, the noisy demand plays an important role in the generation of insignificant autocorrelations (ACs) on returns, while the significant decaying AC patterns of the absolute returns and squared returns are more influenced by the noisy fundamental process. A statistical analysis based on Monte Carlo simulations is conducted to characterize the decay rate. Realistic estimates of the power-law decay indices and the (FI)GARCH parameters are presented.
Resumo:
The histological grading of cervical intraepithelial neoplasia (CIN) remains subjective, resulting in inter- and intra-observer variation and poor reproducibility in the grading of cervical lesions. This study has attempted to develop an objective grading system using automated machine vision. The architectural features of cervical squamous epithelium are quantitatively analysed using a combination of computerized digital image processing and Delaunay triangulation analysis; 230 images digitally captured from cases previously classified by a gynaecological pathologist included normal cervical squamous epithelium (n = 30), koilocytosis (n = 46), CIN 1 (n = 52), CIN 2 (n = 56), and CIN 3 (n=46). Intra- and inter-observer variation had kappa values of 0.502 and 0.415, respectively. A machine vision system was developed in KS400 macro programming language to segment and mark the centres of all nuclei within the epithelium. By object-oriented analysis of image components, the positional information of nuclei was used to construct a Delaunay triangulation mesh. Each mesh was analysed to compute triangle dimensions including the mean triangle area, the mean triangle edge length, and the number of triangles per unit area, giving an individual quantitative profile of measurements for each case. Discriminant analysis of the geometric data revealed the significant discriminatory variables from which a classification score was derived. The scoring system distinguished between normal and CIN 3 in 98.7% of cases and between koilocytosis and CIN 1 in 76.5% of cases, but only 62.3% of the CIN cases were classified into the correct group, with the CIN 2 group showing the highest rate of misclassification. Graphical plots of triangulation data demonstrated the continuum of morphological change from normal squamous epithelium to the highest grade of CIN, with overlapping of the groups originally defined by the pathologists. This study shows that automated location of nuclei in cervical biopsies using computerized image analysis is possible. Analysis of positional information enables quantitative evaluation of architectural features in CIN using Delaunay triangulation meshes, which is effective in the objective classification of CIN. This demonstrates the future potential of automated machine vision systems in diagnostic histopathology. Copyright (C) 2000 John Wiley and Sons, Ltd.