927 resultados para GENE-TRANSFER AGENTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some mitochondrial tRNA genes of land snails show mismatches in the acceptor stems predicted from their gene sequences. The majority of these mismatches fall in regions where the tRNA genes overlap with adjacent downstream genes. We have synthesized cDNA from four circularized tRNAs and determined the sequences of the 5' and 3' parts of their acceptor stems. Three of the four tRNAs differ from their corresponding genes at a total of 13 positions, which all fall in the 3' part of the acceptor stems as well as the discriminator bases. The editing events detected involve changes from cytidine, thymidine, and guanosine to adenosine residues, which generally restore base-pairing in the stems. However, in one case an A-A mismatch is created from an A-C mismatch. It is suggested that this form of RNA editing may involve polyadenylylation of the maturing tRNAs as an intermediate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe here a simple and easily manipulatable Escherichia coli-based genetic system that permits us to identify bacterial gene products that modulate the sensitivity of bacteria to tumoricidal agents, such as DMP 840, a bisnaphthalimide drug. To the extent that the action of these agents is conserved, these studies may expand our understanding agents is conserved, these studies may expand our understanding of how the agents work in mammalian cells. The approach briefly is to use a library of E. coli genes that are overexpressed in a high copy number vector to select bacterial clones that are resistant to the cytotoxic effects of drugs. AtolC bacterial mutant is used to maximize permeability of cells to hydrophobic organic molecules. By using DMP 840 to model the system, we have identified two genes, designated mdaA and mdaB, that impart resistance to DMP 840 when they are expressed at elevated levels. mdaB maps to E. coli map coordinate 66, is located between the parE and parC genes, and encodes a protein of 22 kDa. mdaA maps to E. coli map coordinate 18, is located adjacent to the glutaredoxin (grx) gene, and encodes a protein of 24 kDa. Specific and regulatable overproduction of both of these proteins correlates with DMP 840 resistance. Overproduction of the MdaB protein also imparts resistance to two mammalian topoisomerase inhibitors, Adriamycin and etoposide. In contrast, overproduction of the MdaA protein produces resistance only to Adriamycin. Based on its drug-resistance properties and its location between genes that encode the two subunits of the bacterial topoisomerase IV, we suggest that mdaB acts by modulating topoisomerase IV activity. The location of the mdaA gene adjacent to grx suggests it acts by a drug detoxification mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the generation of a retroviral vector that infects human cells specifically through recognition of the low density lipoprotein receptor. The rationale for this targeted infection is to add onto the ecotropic envelope protein of Moloney murine leukemia virus, normally trophic for murine cells, a single-chain variable fragment derived from a monoclonal antibody recognizing the human low density lipoprotein receptor. This chimeric envelope protein was used to construct a packaging cell line producing a retroviral vector capable of high-efficiency transfer of the Escherichia coli beta-galactosidase gene to human cells expressing low density lipoprotein receptor. This approach offers a generalized plan to generate cell and tissue-specific retroviral vectors, an essential step toward in vivo gene therapy strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a stringently regulated expression system for mammalian cells that uses (i) the RNA polymerase, phi 10 promoter, and T phi transcriptional terminator of bacteriophage T7; (ii) the lac repressor, lac operator, rho-independent transcriptional terminators and the gpt gene of Escherichia coli; (iii) the RNA translational enhancer of encephalomyocarditis virus; and (iv) the genetic background of vaccinia virus. In cells infected with the recombinant vaccinia virus, reporter beta-galactosidase synthesis was not detected in the absence of inducer. An induction of at least 10,000- to 20,000-fold occurred upon addition of isopropyl beta-D-thiogalactopyranoside or by temperature elevation from 30 to 37 degrees C using a temperature-sensitive lac repressor. Regulated synthesis of the secreted and highly glycosylated human immunodeficiency virus 1 envelope protein gp120 was also demonstrated. Yields of both proteins were approximately 2 mg per 10(8) cells in 24 hr. Plasmid transfer vectors for cloning and expression of complete or incomplete open reading frames in recombinant vaccinia viruses are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mutagen-sensitive CHO line irs1SF was previously isolated on the basis of hypersensitivity to ionizing radiation and was found to be chromosomally unstable as well as cross-sensitive to diverse kinds of DNA-damaging agents. The analysis of somatic cell hybrids formed between irs1SF and human lymphocytes implicated a human gene (defined as XRCC3; x-ray repair cross-complementing), which partially restored mitomycin C resistance to the mutant. A functional cDNA that confers mitomycin C resistance was transferred to irs1SF cells by transforming them with an expression cDNA library and obtaining primary and secondary transformants. Functional cDNA clones were recovered from a cosmid library prepared from a secondary transformant. Transformants also showed partial correction of sensitivity to cisplatin and gamma-rays, efficient correction of chromosomal instability, and substantially improved plating efficiency and growth rate. The XRCC3 cDNA insert is approximately 2.5 kb and detects an approximately 3.0-kb mRNA on Northern blots. The cDNA was mapped by fluorescence in situ hybridization to human chromosome 14q32.3, which was consistent with the chromosome concordance data of two independent hybrid clone panels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of DNA technology to regulate the transcription of disease-related genes in vivo has important therapeutic potentials. The transcription factor E2F plays a pivotal role in the coordinated transactivation of cell cycle-regulatory genes such as c-myc, cdc2, and the gene encoding proliferating-cell nuclear antigen (PCNA) that are involved in lesion formation after vascular injury. We hypothesized that double-stranded DNA with high affinity for E2F may be introduced in vivo as a decoy to bind E2F and block the activation of genes mediating cell cycle progression and intimal hyperplasia after vascular injury. Gel mobility-shift assays showed complete competition for E2F binding protein by the E2F decoy. Transfection with E2F decoy inhibited expression of c-myc, cdc2, and the PCNA gene as well as vascular smooth muscle cell proliferation both in vitro and in the in vivo model of rat carotid injury. Furthermore, 2 weeks after in vivo transfection, neointimal formation was significantly prevented by the E2F decoy, and this inhibition continued up to 8 weeks after a single transfection in a dose-dependent manner. Transfer of an E2F decoy can therefore modulate gene expression and inhibit smooth muscle proliferation and vascular lesion formation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tranferência nuclear de células somáticas (TNCS) está sendo utilizada para produzir cavalos de elite. No entanto, durante este procedimento pode ocorrer a perfuração da zona pelúcida, levando, ocasionalmente, à secção da massa celular interna, e conseqüente derivação de gêmeos monozigóticos. Além de serem relatadas alterações no processo de imprinting genômico, que conduzem ao desenvolvimento de doenças. Com a descoberta da possibilidade de reprogramar as células somáticas a um estado de pluripotência (iPSCs), estas células passaram a ser muito utilizadas em pesquisas de neurociência. Contudo, também ocorrem modificações epigenéticas durante esta reprogramação celular. Portanto, nossas hipóteses são que os gêmeos eqüinos gerados pela TNCS podem levar às irregularidades no desenvolvimento do sistema nervoso. O padrão de metilação do SNRPN nas estruturas dos fetos muares clonados, e as células iPSCs são diferentes dos padrões encontrados nos muares analisados. A expressão dos genes SNRPN, Necdin e UBE3A são maiores no cérebro, enquanto a expressão do H19 é maior nas membranas extra-embrionárias. Em nosso estudo, obtivemos duas gestações gemelares equinas derivadas da TNCS, que foram interrompidas com 40 e 60 dias de gestação, e comparados com gestações eqüinas únicas de idade similar. Diferenças no comprimento entre os embriões gêmeos foram observadas aos 40 (2.0 e 2.2 cm 10%) e aos 60 (6,5 e 8,5 cm 24%) dias de gestação. Somente o plexo coróide do quarto ventrículo apresentou-se mais desenvolvido nos fetos com maior comprimento. Ao analisarmos fetos muares clonados em diferentes idades gestacionais e compará-los com muares, nos períodos embrionário, fetal e adulto, não foi observada diferença no padrão de metilação do gene SNRPN. No entanto, na décima passagem das células iPSC o padrão de metilação alterou, em relação aos muares estudados e ao padrão observado nos fibroblastos. Ao analisarmos os fetos clonados nas diferentes idades gestacionais observou-se no cérebro menor expressão dos gene H19 e UBE3A, e maior expressão do gene SNRPN. Contudo, a expressão do gene Necdin variou entre as estruturas estudadas. Em conclusão, apesar dos gêmeos eqüinos provenientes de TNCS diferirem quanto ao tamanho, morfologicamente são iguais. Dentre as estruturas cerebrais o plexo coróide se apresentou mais desenvolvido nos fetos de maior comprimento. Os fetos muares clonados não apresentaram diferença no padrão de metilação do gene SNRPN. No entanto, as iPSCs apresentaram alteração no padrão de metilação deste gene na décima passagem. Embora os genes SNRPN, Necdin e UBE3A sejam expressos no cérebro, o SNRPN apresentou-se prevalente nessa estrutura

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fungi Pochonia chlamydosporia and Pochonia rubescens are parasites of nematode eggs and thus are biocontrol agents of nematodes. Proteolytic enzymes such as the S8 proteases VCP1 and P32, secreted during the pathogenesis of nematode eggs, are major virulence factors in these fungi. Recently, expression of these enzymes and of SCP1, a new putative S10 carboxypeptidase, was detected during endophytic colonization of barley roots by these fungi. In our study, we cloned the genomic and mRNA sequences encoding P32 from P. rubescens and SCP1 from P. chlamydosporia. P32 showed a high homology with the serine proteases Pr1A from the entomopathogenic fungus Metarhizium anisopliae and VCP1 from P. chlamydosporia (86% and 76% identity, respectively). However, the catalytic pocket of P32 showed differences in the amino acids of the substrate-recognition sites compared with the catalytic pockets of Pr1A and VCP1 proteases. Phylogenetic analysis of P32 suggests a common ancestor with protease Pr1A. SCP1 displays the characteristic features of a member of the S10 family of serine proteases. Phylogenetic comparisons show that SCP1 and other carboxypeptidases from filamentous fungi have an origin different from that of yeast vacuolar serine carboxypeptidases. Understanding protease genes from nematophagous fungi is crucial for enhancing the biocontrol potential of these organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H+-amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have non-overlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.