983 resultados para Gás-sólido fluxo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water management in any area is highly important to the success of many business and also of life and the understanding of your relationship with the environment brings better control to its demand. I.e. hydrogeological studies are needed under better understanding of the behavior of an aquifer, so that its management is done so as not to deplete or harm it. The objective of this work is the numerical modeling in transient regime of a portion of the Rio Claro aquifer formation in order to get answers about its hydrogeological parameters, its main flow direction and also its most sensitive parameters. A literature review and conceptual characterization of the aquifer, combined with field campaigns and monitoring of local water level (NA), enabled the subsequent construction of the mathematical model by finite elements method, using the FEFLOW 6.1 ® computational algorithm. The study site includes the campus of UNESP and residential and industrial areas of Rio Claro city. Its area of 9.73 km ² was divided into 318040 triangular elements spread over six layers, totaling a volume of 0.25 km³. The local topography and geological contacts were obtained from previous geological and geophysical studies as well as profiles of campus wells and SIAGAS / CPRM system. The seven monitoring wells on campus were set up as observation points for calibration and checking of the simulation results. Sampling and characterization of Rio Claro sandstones shows up a high hydrological and lithological heterogeneity for the aquifer formation. The simulation results indicate values of hydraulic conductivity between 10-6 and 10-4 m / s, getting the Recharge/Rainfall simulation in transient ratio at 13%. Even with the simplifications imposed on the model, it was able to represent the fluctuations of local NA over a year of monitoring. The result was the exit of 3774770 m³ of water and the consequently NA fall. The model is considered representative for the...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the behavior of the deposition and mechanical damage in seeds using a continuous flow metering system under different slope and speed. Part of the study was conducted at Agricultural Research Foundation Agricultural - (FAPA), where seeds that are deposited by a metering system were collected, and the quality analysis verifying the percentage of mechanical damage were conducted at the Faculty of Agricultural Sciences, UNESP, city of Botucatu– SP. The mechanism deposition was subjected to three different speed conditions (4,7, and 10 km.h-1) and three differents working slopes, ( 3%, 8%, and 16%). The results were submitted to Tukey test (p ≤ 0.05), and an analysis of variance with F test at 5% significance level was performed. The results showed an interaction between the factor slope and speed of work, increasing the metering mechanism speed, results in a reduction of the seed deposition at a 3% slope but a working speed of 10 km h-1did not reduce the rate of seed deposition until the slope reaches 16%. Both the slope factor and the working speed caused at least 3.9 and 4.2% more damage to the seeds, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of pesticides is one of the most important steps in the agricultural production process. The spray volume can directly affect application success, and this parameter is directly dependent on the displacement speed of the sprayer. In conventional systems, the operator has to maintain a constant speed to ensure uniform application along the tracks. In order to improve over application quality and preserve levels of precision for applied doses; the use of electronic flow control systems allows for automatic adjustment of volume applied over the area when there is a change in velocity during application. The objective of this research was to study the response times of a flow controller with DGPS for aerial application subjected to variations of velocity in laboratory simulated flight conditions. For this purpose, a bench test has been developed including software for simulating DGPS signals, which was used to simulate different flight speeds and conditions. The results showed the average response time from the flow controller to a change in velocity to be between 6 and 20 seconds. Variations in total flow and the controller setting had a significant influence on response time with situations where there was interaction between the factors being evaluated. There was a tendency for better response times using a constant setting for the control algorithm other than that specified by the manufacturer. The flow controller presented an average error rates below 2% in all evaluated operating conditions, providing satisfactory accuracy in determining the output of product in different test situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)