988 resultados para European reconstruction
Resumo:
The degree of development and operability of the indicators for the Marine Strategy Framework Directive (MSFD) using Descriptor 1 (D1) Biological Diversity was assessed. To this end, an overview of the relevance and degree of operability of the underlying parameters across 20 European countries was compiled by analysing national directives, legislation, regulations, and publicly available reports. Marked differences were found between countries in the degree of ecological relevance as well as in the degree of implementation and operability of the parameters chosen to indicate biological diversity. The best scoring EU countries were France, Germany, Greece and Spain, while the worst scoring countries were Italy and Slovenia. No country achieved maximum scores for the implementation of MSFD D1. The non-EU countries Norway and Turkey score as highly as the top-scoring EU countries. On the positive side, the chosen parameters for D1 indicators were generally identified as being an ecologically relevant reflection of Biological Diversity. On the negative side however, less than half of the chosen parameters are currently operational. It appears that at a pan-European level, no consistent and harmonized approach currently exists for the description and assessment of marine biological diversity. The implementation of the MSFD Descriptor 1 for Europe as a whole can therefore at best be marked as moderately successful.
Resumo:
From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air–sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011–2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of −0.6 ± 0.3, −0.9 ± 0.3 and −0.5 ± 0.3 mol C m−2 yr−1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m−2 yr−1 in the sWEC and IS, respectively. Air–sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of −1.11 ± 0.32 Tg C yr−1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to estimate and extrapolate air–sea CO2 fluxes in sparsely sampled area.
Resumo:
The potential response of the marine ecosystem of the northwest European continental shelf to climate change under a medium emissions scenario (SRES A1B) is investigated using the coupled hydrodynamics-ecosystem model POLCOMS-ERSEM. Changes in the near future (2030–2040) and the far future (2082–2099) are compared to the recent past (1983–2000). The sensitivity of the ecosystem to potential changes in multiple anthropogenic drivers (river nutrient loads and benthic trawling) in the near future is compared to the impact of changes in climate. With the exception of the biomass of benthic organisms, the influence of the anthropogenic drivers only exceeds the impact of climate change in coastal regions. Increasing river nitrogen loads has a limited impact on the ecosystem whilst reducing river nitrogen and phosphate concentrations affects net primary production(netPP) and phytoplankton and zooplankton biomass. Direct anthropogenic forcing is seen to mitigate/amplify the effects of climate change. Increasing river nitrogen has the potential to amplify the effects of climate change at the coast by increasing netPP. Reducing river nitrogen and phosphate mitigates the effects of climate change for netPP and the biomass of small phytoplankton and large zooplankton species but amplifies changes in the biomass of large phytoplankton and small zooplankton.
Resumo:
Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas’ ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton’s exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.
Resumo:
Maritime transport and shipping are impacted negatively by biofouling, which can result in increased fuel consumption. Thus, costs for fouling reduction can be considered an investment to reduce fuel consumption. Anti-fouling measures also reduce the rate of introduction of non-indigenous species (NIS). Further mitigation measures to reduce the transport of NIS within ballast water and sediments impose additional costs. The estimated operational cost of NIS mitigation measures may represent between 1.6% and 4% of the annual operational cost for a ship operating on European seas, with the higher proportional costs in small ships. However, fouling by NIS may affect fuel consumption more than fouling by native species due to differences in species’ life-history traits and their resistance to antifouling coatings and pollution. Therefore, it is possible that the cost of NIS mitigation measures could be smaller than the cost from higher fuel consumption arising from fouling by NIS.
Resumo:
In this paper we present the first decadal reanalysis simulation of the biogeochemistry of the North West European shelf, along with a full evaluation of its skill and value. An error-characterized satellite product for chlorophyll was assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The results showed that the reanalysis improved the model predictions of assimilated chlorophyll in 60% of the study region. Model validation metrics showed that the reanalysis had skill in matching a large dataset of in situ observations for ten ecosystem variables. Spearman rank correlations were significant and higher than 0.7 for physical-chemical variables (temperature, salinity, oxygen), ∼0.6 for chlorophyll and nutrients (phosphate, nitrate, silicate), and significant, though lower in value, for partial pressure of dissolved carbon dioxide (∼0.4). The reanalysis captured the magnitude of pH and ammonia observations, but not their variability. The value of the reanalysis for assessing environmental status and variability has been exemplified in two case studies. The first shows that between 340,000-380,000 km2 of shelf bottom waters were oxygen deficient potentially threatening bottom fishes and benthos. The second application confirmed that the shelf is a net sink of atmospheric carbon dioxide, but the total amount of uptake varies between 36-46 Tg C yr−1 at a 90% confidence level. These results indicate that the reanalysis output dataset can inform the management of the North West European shelf ecosystem, in relation to eutrophication, fishery, and variability of the carbon cycle.
Resumo:
The relationship between biodiversity and stability of marine benthic assemblages was investigated using existing data sets (n = 28) covering various spatial (m-km) and temporal (1973-2006) scales in different benthic habitats (emergent rock, rock pools and sedimentary habitats) through meta-analyses. Assemblage stability was estimated by measuring temporal variances of species richness, total abundance (density or % cover) and community species composition and abundance structure (using multivariate analyses). Positive relationships between temporal variability in species number and richness were generally observed at both quadrat (<1 m2) and site (100 m2) scales, while no relationships were observed by multivariate analyses. Positive relationships were also observed at the scale of site between temporal variability in species number and variability in community structure with evenness estimates. This implies that the relationship between species richness or evenness and species richness variability is slightly positive and depends on the scale of observation, suggesting that biodiversity per se is important for the stability of ecosystems. Changes within community assemblages in terms of structure are, however, generally independent of biodiversity, suggesting no effect of diversity, but the potential impact of individual species, and/or environmental factors. Except for sedimentary and rock pool habitats, no relationship was observed between temporal variation of the aggregated variable of total abundances and diversity at either scale. Overall our results emphasise that relationships depend on scale of measurements, type of habitats and the marine systems (North Atlantic and Mediterranean) considered.
Resumo:
The paper presents the description of one new order (Asplenietalia septentrionalo-cuneifolii) and two new alliances (Arenarion bertolonii and Physoplexido comosae- Saxifragion petraeae). In addition, the syntaxon Asplenietalia lanceolato-obovati is here formally raised to the order level and the name Hypno-Polypodietalia vulgaris is validated.
Resumo:
We present descriptions of a new order (Ranunculo cortusifolii-Geranietalia reuteri and of a new alliance (Stachyo lusitanicae-Cheirolophion sempervirentis) for the herbaceous fringe communities of Macaronesia and of the southwestern Iberian Peninsula, respectively. A new alliance, the Polygalo mediterraneae-Bromion erecti (mesophilous post-cultural grasslands), was introduced for the Peninsular Italy. We further validate and typify the Armerietalia rumelicae (perennial grasslands supported by nutrient-poor on siliceous bedrocks at altitudes characterized by the submediterranean climate of central-southern Balkan Peninsula), the Securigero-Dasypyrion villosae (lawn and fallow-land tall-grass annual vegetation of Italy), and the Cirsio vallis-demoni-Nardion (acidophilous grasslands on siliceous substrates of the Southern Italy). Nomenclatural issues (validity, legitimacy, synonymy, formal corrections) have been discussed and clarified for the following names: Brachypodio-Brometalia, Bromo pannonici-Festucion csikhegyensis, Corynephoro-Plantaginion radicatae, Heleochloion, Hieracio-Plantaginion radicatae, Nardetea strictae, Nardetalia strictae, Nardo-Callunetea, Nardo-Galion saxatilis, Oligo-Bromion, Paspalo-Heleochloetalia, Plantagini-Corynephorion and Scorzoneret alia villosae.
Resumo:
Fourty-two high-rank syntaxa and seven associations of the thallophyte system of syntaxa are either described as new or validated in this paper. Among those, there are the following nine classes: Aspicilietea candidae, Caulerpetea racemosae, Desmococcetea olivacei, Entophysalidetea deustae, Gloeocapsetea sanguineae, Mesotaenietea berggrenii, Naviculetea gregariae, Porpidietea zeoroidis, Roccelletea phycopsis. Eleven orders and ten alliances as well as three associations are described or validated: the Aspicilietalia verruculosae (incl. Aspicilion mashiginensis and Teloschistion contortuplicati), the Caulerpetalia racemosae (incl. Caulerpion racemosae), the Desmococcetalia olivacei (incl. Desmococcion olivacei), the Dirinetalia massiliensis, the Fucetalia vesiculosi (incl. Ascophyllion nodosi), the Gloeocapsetalia sanguineae, the Lecideetalia confluescentis (incl. Lecideion confluescentis), the Mesotaenietalia berggrenii (incl. Mesotaenion berggrenii, Mesotaenietum berggrenii and Chloromonadetum nivalis), the Naviculetalia gregariae (incl. Oscillatorion limosae and Oscillatorietum limosae), the Porpidietalia zeoroidis (incl. Porpidion zeoroidis), and the Roccelletalia fuciformis (incl. Paralecanographion grumulosae). Further, five orders, seven alliances and four associations, classified in known classes, were described as well. These include: the Bacidinetalia phacodis, the Agonimion octosporae and the Dendrographetalia decolorantis (all in the Arthonio radiatae-Lecidelletea elaeochromae), the Staurothelion solventis (in the Aspicilietea lacustris), the Pediastro duplicis-Scenedesmion quadricaudae and the Pediastro duplicis-Scenedesmetum quadricaudae (both in the Asterionelletea formosae), the Peccanion coralloidis and the Peltuletalia euplocae (both in the Collematetea cristati), the Laminarion hyperboreae, the Saccorhizo polyschidi-Laminarietum and the Alario esculenti-Himanthalietum elongatae (all in the Cystoseiretea crinitae), the Delesserietalia sanguinei, the Delesserion sanguinei and the Delesserietum sanguineae (all in the Lithophylletea soluti), as well as the the Rinodino confragosae-Rusavskietalia elegantis and the Rhizocarpo geographici-Rusavskion elegantis (both in the Rhizocarpetea geographici).