795 resultados para Estructuras de hormigón
Resumo:
p.13-27
Resumo:
p.1-7
Resumo:
p.7-13
Resumo:
Los modelos 'modelos animales con efectos maternos' (MAM)son modelos lineales mixtos que se utilizan para ajustar registros de caracteres bajo la influencia de efectos maternos. Uno de los desafíos más importantes en el marco de los MAM es la estimación de los parámetros de dispersión o 'componentes de (co)varianza' (CVC). En esta tesis se introducen desde una perspectiva bayesiana contribuciones teóricas y metodológicas con relación a la estimación de CVC para MAM sujetos a estructuras de covarianza novedosas. En primer lugar, se describe una implementación del análisis bayesiano jerárquico vía el algoritmo del muestreo de Gibbs. Luego, se considera una especificación conjugada diferente para la distribución a priori de la matriz de covarianza genética, basada en la distribución Wishart invertida generalizada, y se presenta una estrategia para determinar los correspondientes hiperparámetros. Esta estrategia fue comparada contra otras especificaciones a priori mediante un estudio de simulación estocástica, y produjo estimaciones precisas de los parámetros genéticos, con menores errores estándares y mejor tasa de convergencia. En segundo lugar, se presenta una formulación alternativa del MAM que incluye un parámetro de correlación ambiental entre pares de observaciones madre-progenie, y se desarrolla un procedimiento de estimación basado en un algoritmo de muestreo por grilla. El procedimiento fue programado y ejecutado exitosamente, y se obtuvo la primera estimación del parámetro de correlación con datos de campo para peso al destete en bovinos de carne. Por último, se considera el problema de la estimación de CVC en una población multirracial, donde en general es necesario especificar una estructura de covarianza heterogénea para los valores de cría. En particular, se demuestra que el modelo basado en la descomposición de la matriz de covarianza genética es equivalente al que deriva de la teoría genética cuantitativa. Además, se extiende el modelo para incluir efectos maternos y se describe la implementación de un análisis bayesiano jerárquico con el objetivo de estimar los CVC. El procedimiento fue implementado con éxito en datos experimentales de peso al destete y se obtuvieron por primera vez estimaciones para el conjunto completo de CVC.
Resumo:
Los cambios climáticos ponen en riesgo la producción agrícola, la seguridad alimentaria y los programas de desarrollo rural. Es posible que los programas de desarrollo rural tengan mayor éxito en el cumplimiento de sus objetivos cuando integren a sus propuestas los conocimientos de distintos actores. La presente investigación propone el estudio de percepciones sobre cambios climáticos por parte de diferentes actores sociales en Anchieta, SC, Brasil El caso de estudio fue elegido por su relevante experiencia en el desarrollo de estrategias de adaptación para las adversidades climáticas locales. Para llevar a cabo, el estudio fueron entrevistados 32 personas, (agricultores que utilizan una variedad local, agricultores que utilizan variedades industriales y tomadores de decisión)respecto de 4 aspectos centrales: A- Creencias sobre cambios climáticos, B- Influencia de los cambios climáticos en su vida, C- Posibilidad de intervención en los cambios climáticos y D- Medidas posibles, evaluación de estrategias de adaptación. El cambio climático fue identificado en las sequías, evidenciándose distintas acciones humanas como promotoras de la intensificación de estos cambios. Los resultados se relacionan con la construcción social de los problemas y las estructuras que condinan los discursos humanos
Resumo:
p.49-57
Resumo:
Con el modelo presentado para caracterizar la corriente Pensamiento Numérico hemos hecho una aproximación a las estructuras numéricas que se estudian en Secundaria Obligatoria, tratando de ajustarnos al marco conceptual propuesto en el Currículo de Matemáticas. Como resultado de esta exploración se abren vias de reflexión muy sugerentes para pensar los viejos conceptos de la aritmética con ideas nuevas y potentes Los apuntes aquí presentados son una primera reflexión, explorada y desarrollada con cierto detalle, en algún caso, y sólo con ideas generales, en otros. Se trata de una línea de investigación emergente en nuestro país, con resultados contrastados en otras comunidades, que aquí proponemos a debate público y como materia de trabajo para profesores e investigadores interesados.
Resumo:
Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
Analizamos el sentido estructural que estudiantes de entre 16 y18 años de edad ponen de manifiesto al trabajar con expresiones algebraicas, en el contexto de la simplificación de fracciones algebraicas que involucran las igualdades notables cuadrado de la suma, cuadrado de la diferencia, diferencia de cuadrados y propiedad distributiva/factor común. La identificación y clasificación de las estrategias empleadas por los estudiantes nos permite diferenciar tres modos de actuación que evidencian diferentes niveles de sentido estructural. Este análisis nos permite distinguir un amplio espectro de niveles de sentido estructural y avanzar en la comprensión del constructo sentido estructural que informa sobre las habilidades necesarias para hacer un uso eficiente de las técnicas algebraicas en tareas escolares.
Resumo:
El presente reporte articula el modelo educativo de van Hiele en su aspecto prescriptivo con la enseñanza de uno de los conceptos fundamentales del Análisis Matemático, continuidad local, a través de la implementación y el desarrollo de un Módulo de Aprendizaje que permite procesos de razonamiento en los estudiantes con el fin de promoverlos de un Nivel II a un Nivel III, el módulo es construido en correspondencia con los descriptores de fases para de dar cuenta de las estructuras mentales elaboradas. Posteriormente, en el análisis de cada uno de los tres casos, se describe en categorías en correspondencia los descriptores y donde se hace explícito como razonan los estudiantes en su paso del Nivel II al Nivel III respecto al concepto de continuidad local.
Resumo:
Nos proponemos estudiar las construcciones de polígonos regulares con regla y compás con la asistencia del GeoGebra, y presentar una secuencia de acciones que pueden resultar de base para enseñar estos conceptos. Para un mejor aprovechamiento de este trabajo, los lectores deberían tener nociones de geometría, particularmente estar familiarizados con los problemas de construcciones con regla y compás. También es recomendable tener conocimientos de estructuras algebraicas, especialmente de extensiones de cuerpos. Por estos motivos está dirigido a docentes de educación terciaria y a estudiantes que tengan los conocimientos mencionados anteriormente.
Resumo:
El Modelo Curricular de la República Argentina incluye como uno de sus objetivos prácticas cooperativas en la Educación Secundaria. El presente trabajo desarrolla un proyecto para dar lugar a la estimulación de las habilidades interpersonales a través de actividades para la clase de Matemática correspondiente a la etapa de formalización de estructuras conceptuales-procedimentales, apoyadas en los Pilares del Cooperativismo, con una concepción de Educación para la Libertad, la Justicia y la Solidaridad.
Resumo:
En este trabajo se presenta una aplicación del Análisis de Redes Sociales (ARS) al estudio de las relaciones entre alumnos de segundo año de una Escuela Técnica. El ARS se apoya en la teoría de grafos cuyo bagaje matemático permite analizar y medir, en términos generales, propiedades de las estructuras sociales en particular la escuela. La vida escolar es una trama compleja de factores que influirían en el rendimiento académico de los alumnos, tales como: tiempo de estudio que comparten, desde cuándo se conocen entre los compañeros, la proximidad de sus domicilios, sexo, edad, entre otros. Los factores sexo y edad no son relevantes dado que el grupo bajo estudio está formado por varones alrededor de los 16 años. En este trabajo se mostrarán los resultados obtenidos por el primer factor mencionado que fueron procesados a través de los software Ucinet 6 y Netdraw.
Resumo:
Este trabajo presenta una experiencia realizada con cuatro grupos de alumnos provenientes de dos escuelas locales pertenecientes a noveno año de la EGB y a primer año de la Educación Polimodal. En el mismo se investiga la construcción de la idea de infinito mediante la elaboración del fractal copo de nieve. Se analizan logros y dificultades. Los fractales permiten un acercamiento entre las estructuras analíticas y las formaciones gráficas que muestran los procesos iterativos que repiten infinitamente procesos finitos. Dichos procesos permiten obtener una figura autosemejante. La visualización de estos objetos permite la comprensión de los procesos de cambios de acuerdo a la transformación de la misma figura como así también cuestionarse el por qué de dicho cambio y si el mismo es o no controlable.