983 resultados para Enzymatic Activity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Freshwater stingrays are very common in the Parana, Paraguay, Araguaia, and Tocantins Rivers and tributaries in Brazil. This study presents the clinical aspects of 84 patients injured by freshwater stingrays. Intense pain was the most conspicuous symptom. Skin necrosis was observed in a high percentage of the victims, mostly fishermen and bathers. The initial therapeutic procedures, like immersion of the affected member in hot water were effective in the initial phases of the envenoming, especially in the control of the acute pain; however, they did not prevent skin necrosis. By SDS-PAGE, the freshwater stingray (Potamotrygon falkneri) venom extract presented a major band of approximately 12 kDa. Several other components distributed between 15 and 130 kDa were detected in the venom extract. Many components with molecular mass above 80 and 100 kDa have gelatinolytic and caseinolytic activities, respectively. Hyaluronidase activity was detected only in a component around 84 kDa in P. falkneri venom extract. Our results demonstrated that the presence of these enzymes could explain partially the local clinical pictures presented by patients wounded by freshwater stingray. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ethanol-induced oxidative damage is commonly associated with the generation of reactive oxygen molecules, leading to oxidative stress. Considering that antioxidant activity is an important mechanism of action involved in cytoprotection, the aim of this work was to evaluate the antioxidant properties of the alkaloid indigo (1) (2 mg/kg, p. o.), obtained from the leaves of Indigofera truxillensis Kunth (Fabaceae), on rat gastric mucosa submitted to ethanol-induced (100%, 1 mL, p.o.) gastric ulcer. Enzymatic assays and DNA fragmentation analysis were performed. When ethanol was administered to the control group, the sulfhydryl content (SH) and the glutathione peroxidase (GPx) activity decreased by 41% and 50%, respectively; in contrast, superoxide dismutase (SOD) and glutathione reductase (GR) activities increased by 56% and 67%, respectively. Additionally, myeloperoxidase (MPO) activity, a marker for free radical generation caused by polymorphonuclear neutrophil (PMN) tissue infiltration, also increased 4.5-fold after ethanol treatment. Rat gastric mucosa exposed to ethanol showed DNA fragmentation. Indigo alkaloid pretreatment protected rats from ethanol-induced gastric lesions. This effect was determined by the ulcerative lesion area (ULA), indicating an inhibition of around 80% at 2 mg/kg. This alkaloid also diminished GPx activity, which was higher than that observed with ethanol alone. However, this effect was counterbalanced by increased GR activity. Indigo was unable to restore alterations in SOD activity promoted by ethanol. After indigo pretreatment, SH levels and MPO activity remained normal and gastric mucosa DNA damage caused by ethanol was also partially prevented by indigo. These results suggest that the gastroprotective mechanisms of indigo include non-enzymatic antioxidant effects and the inhibition of PMN infiltration which, in combination, partially protect the gastric mucosa against ethanol-induced DNA damage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The midgut of adult female Anopheles darlingi is comprised of narrow anterior and dilated posterior regions, with a single layered epithelium composed by cuboidal digestive cells. Densely packed apical microvilli and an intricate basal labyrinth characterize each cell pole. Before blood feeding, apical cytoplasm contains numerous round granules and whorled profiles of rough endoplasmic reticulum. Engorgement causes a great distension of midgut. This provokes the flattening of digestive cells and their nuclei. Simultaneously, apical granules disappear, the whorls of endoplasmic reticulum disassemble and 3 h post bloodmeal (PBM), nucleoli enlarge manyfold. An intense absorptive process takes place during the first 24h PBM, with the formation of large glycogen inclusions, which persist after the end of the digestive process. Endoproteases activities are induced after bloodmeal and attain their maximum values between 10 and 36 h PBM. At least two different aminopeptidases seem to participate in the digestive process, with their maximum activity values at 36 and 48 h PBM, respectively. Coarse electrondense aggregates, possibly debris from digested erythrocytes, begin to appear on the luminal face of the peritrophic membrane from 18 h PBM and persist during all the digestive process, and are excreted at its end. We suggest that these aggregates could contain some kind of insoluble form of haem, in order of neutralize its toxicity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Proteases are one of the most important groups of industrial enzymes, with considerable application in the food industry. The aim of this work was to study a novel protease produced by the thermophilic fungus, Thermoascus aurantiacus, through solid-state fermentation (SSF). The enzyme acted optimally at pH 5.5 and 60 degrees C it was stable up to 60 degrees C for 1 h and in the pH range 3.0-9.5. To elucidate the enzyme's proteolytic activity, its hydrolytic profile on bovine casein, an important protein in the food industry, was studied by enzymatic hydrolysis on skim milk, analyzed by gel electrophoresis (UREA-PAGE), which clearly showed that the protease does not have the same specificity as bovine chymosin. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A colorimetric method has been developed and optimized to measure L-malic acid in samples of fruit juices and wine. This method is based on oxidation of the analyte, catalyzed by malate dehydrogenase (MDH) from dry baker's yeast, and in combination with the reduction of a tetrazolium salt (MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). In the present study, the method exhibited sensitivity in the range of 500-4000 mu M of L-malic acid in the reaction cuvette, with the lower detection limit of 6.7-10(-2) g/L, the upper limit of 53.6.10(-2) g/L and a maximum standard deviation of only 2.5 % for the analyzed samples. The MDH activity from baker's yeast was also optimized, the enzyme showed a high stability at pH=8.0-9.0 and the activity was maintained completely at temperatures up to 40 degrees C for 1 hour. The results show that the colorimetric method using enzymatic preparations from dry baker's yeast is a simple and low-cost method with possibility of wide application.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Geranylation of benzoic acid derivatives by enzymatic extracts from Piper crassinervium (Piperaceae)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Piratoxins (PrTX) I and III are phospholipases A(2) (PLA(2)s) or PLA(2) homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA(2), while PrTX-I is a Lys49 PLA, homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities. (C) 2001 Academic Press.
Resumo:
The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.
Enzymatic variability among venoms from different subspecies of Apis mellifera (Hymenoptera: Apidae)
Resumo:
The enzymatic variability was analyzed in venom extracts from bees reared in different colonies of the Africanized, A. m. ligustica and A. m. carnica subspecies. The implications of this variation focused on the biochemistry differentiation and immunogenicity of these venoms. The results showed the existence of a huge variability among the subspecies as well as among the colonies for three out of the six tested components - hyaluronidase, acid phosphatase and proteases - suggesting the utilization of these features as possible biochemical markers. Furthermore, although not statistically significant, it was found that the Africanized bee venom presented slightly higher levels of protein content and esterase activity, when compared to the other subspecies. If the esterase plays a role in the pain intensity caused by the sting, as suggested elsewhere, this might suggest a reason for a bigger algogenicity of this venom in relation to that of European bees. On the other hand, A. m. ligustica bees presented the highest levels of proteolytic and acid phosphatase activities, whose functions are not enlightened in Hymenoptera venoms. The A. m. carnica workers presented the highest hyaluronidase and the lowest acid phosphatase activity levels. The extremely variable results among colonies of the same subspecies and among subspecies, for the tested venom components, justify the absence of correlation between allergic reactions and tests with pooled venom.
Resumo:
The development of the germination process and drought stress during the drying of coffee can generate reactive oxygen species, which can be neutralized by way of antioxidant mechanisms. No studies related to antioxidant enzymes during the drying of coffee were found in the literature, and considering their importance, the enzymatic activities of superoxide dismutase (SOD), guaiacol peroxidase (GPOX) and glutathione reductase (GR), and also the hydrogen peroxide content were evaluated during the drying of two types of coffee bean, one processed as natural coffee and the other as pulped natural coffee. The results showed a reduction in the SOD, GPOX and GR enzymatic activities of the natural coffee as compared to the pulped natural coffee during the drying period. Moreover, the hydrogen peroxide content of the natural coffee was greater than that of the pulped natural coffee. These results suggest the development of oxidative stress during the coffee drying process, controlled more efficiently in pulped natural coffee by the early action of GPOX during the drying process. Nevertheless, differential responses by SOD isoenzymes and possibly the role of other peroxidases also appear to be involved in the responses observed. © 2013 Springer-Verlag Berlin Heidelberg.