954 resultados para Electrical resistances
Resumo:
OBJECTIVE: To investigate effects of isoflurane at approximately the minimum alveolar concentration (MAC) on the nociceptive withdrawal reflex (NWR) of the forelimb of ponies as a method for quantifying anesthetic potency. ANIMALS: 7 healthy adult Shetland ponies. PROCEDURE: Individual MAC (iMAC) for isoflurane was determined for each pony. Then, effects of isoflurane administered at 0.85, 0.95, and 1.05 iMAC on the NWR were assessed. At each concentration, the NWR threshold was defined electromyographically for the common digital extensor and deltoid muscles by stimulating the digital nerve; additional electrical stimulations (3, 5, 10, 20, 30, and 40 mA) were delivered, and the evoked activity was recorded and analyzed. After the end of anesthesia, the NWR threshold was assessed in standing ponies. RESULTS: Mean +/- SD MAC of isoflurane was 1.0 +/- 0.2%. The NWR thresholds for both muscles increased significantly in a concentration-dependent manner during anesthesia, whereas they decreased in awake ponies. Significantly higher thresholds were found for the deltoid muscle, compared with thresholds for the common digital extensor muscle, in anesthetized ponies. At each iMAC tested, amplitudes of the reflex responses from both muscles increased as stimulus intensities increased from 3 to 40 mA. A concentration-dependent depression of evoked reflexes with reduction in slopes of the stimulus-response functions was detected. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthetic-induced changes in sensory-motor processing in ponies anesthetized with isoflurane at concentrations of approximately 1.0 MAC can be detected by assessment of NWR. This method will permit comparison of effects of inhaled anesthetics or anesthetic combinations on spinal processing in equids.
Resumo:
Permission from the ethics committee and informed consent were obtained. The purpose of this study was to prospectively evaluate a method developed for the noninvasive assessment of muscle metabolites during exercise. Hydrogen 1 magnetic resonance (MR) spectroscopy peaks were measured during tetanic isometric muscle contraction imposed by supramaximal repetitive nerve stimulation. The kinetics of creatine-phosphocreatine and acetylcarnitine signal changes (P < .001) could be assessed continuously before, during, and after exercise. The control peak (trimethylammonium compounds), which served as an internal reference, did not change. This technique-that is, functional MR spectroscopy-opens the possibility for noninvasive diagnostic muscle metabolite testing in a clinical setting.
Resumo:
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
Resumo:
A shortening of the atrial refractory period has been considered as the main mechanism for the increased risk of atrial fibrillation in hyperthyroidism. However, other important factors may be involved.
Resumo:
Carotid sinus baroreceptors are involved in controlling blood pressure (BP) by providing input to the cardiovascular regulatory centers of the medulla. The acute effect of temporarily placing an electrode on the carotid sinus wall to electrically activate the baroreflex was investigated. We studied 11 patients undergoing elective carotid surgery. Baseline BP was 146+30/66+/-17 mm Hg and heart rate (HR) 72+/-7 bpm (mean +/- standard deviation). An electrode was placed upon the carotid sinus and after obtaining a steady state baseline of BP and HR, an electric current was applied and increased in 1-volt increments. A voltage dependent and highly significant reduction in BP was observed which averaged 18+/-26* and 8.0+/-12 mm Hg for systolic BP and diastolic BP, respectively. Maximal reductions occurred at 4.4+/-1.2 V: 23+/-24 mm Hg*, 16+/-10 mm Hg* and 7+/-12 bpm* for systolic BP, diastolic BP and HR, respectively ( = p <.05). Thus, electrical stimulation of the carotid sinus activates the carotid baroreflex resulting in a reduction in BP and HR. This presents a proof of concept for device based baroreflex modulation in acute BP regulation and adds to the available data which provide a rationale for evaluating this system in the context of chronic BP reduction in hypertensive patients.
Resumo:
OBJECTIVE: To assess the effects of a single intravenous dose of butorphanol (0.1 mg kg(-1)) on the nociceptive withdrawal reflex (NWR) using threshold, suprathreshold and repeated subthreshold electrical stimuli in conscious horses. STUDY DESIGN: 'Unblinded', prospective experimental study. ANIMALS: Ten adult horses, five geldings and five mares, mean body mass 517 kg (range 487-569 kg). METHODS: The NWR was elicited using single transcutaneous electrical stimulation of the palmar digital nerve. Repeated stimulations were applied to evoke temporal summation. Surface electromyography was performed to record and quantify the responses of the common digital extensor muscle to stimulation and behavioural reactions were scored. Before butorphanol administration and at fixed time points up to 2 hours after injection, baseline threshold intensities for NWR and temporal summation were defined and single suprathreshold stimulations applied. Friedman repeated-measures analysis of variance on ranks and Wilcoxon signed-rank test were used with the Student-Newman-Keul's method applied post-hoc. The level of significance (alpha) was set at 0.05. RESULTS: Butorphanol did not modify either the thresholds for NWR and temporal summation or the reaction scores, but the difference between suprathreshold and threshold reflex amplitudes was reduced when single stimulation was applied. Upon repeated stimulation after butorphanol administration, a significant decrease in the relative amplitude was calculated for both the 30-80 and the 80-200 millisecond intervals after each stimulus, and for the whole post-stimulation interval in the right thoracic limb. In the left thoracic limb a decrease in the relative amplitude was found only in the 30-80 millisecond epoch. CONCLUSION: Butorphanol at 0.1 mg kg(-1) has no direct action on spinal Adelta nociceptive activity but may have some supraspinal effects that reduce the gain of the nociceptive system. CLINICAL RELEVANCE: Butorphanol has minimal effect on sharp immediate Adelta-mediated pain but may alter spinal processing and decrease the delayed sensations of pain.
Resumo:
BACKGROUND: Intradialytic exercise has been described to improve blood pressure stability and dialysis efficacy. However, comorbid conditions in the dialysis population often preclude the widespread use of active intradialytic exercise. Therefore, we investigated the effect of intradialytic transcutaneous muscle stimulation (TEMS) and passive cycling movements (PCMs) on blood pressure and dialysis efficacy in patients. STUDY DESIGN: Prospective, controlled, randomized, crossover investigation. SETTING ; PARTICIPANTS: Ten patients were randomly allocated to TEMS, PCMs, or no intervention (NI) for 9 consecutive dialysis sessions. INTERVENTION: Participants were studied with NI, PCMs using a motor-driven ergometer, and bilateral TEMS of the leg musculature. Individual dialysis prescriptions were unchanged during the investigation. OUTCOMES ; MEASUREMENTS: The effect of TEMS and PCMs on blood pressure and dialysis efficacy in patients was assessed. RESULTS: Mean blood pressure increased from 121/64 +/- 21/15 mm Hg with NI to 132/69 +/- 21/15 mm Hg (P < 0.001) during sessions with PCMs and 125/66 +/- 22/16 mm Hg (P < 0.05) during sessions with TEMS. Urea and phosphate removal during dialysis were significantly (P < 0.001) greater with TEMS (19.4 +/- 3.7 g/dialysis and 1,197 +/- 265 mg/dialysis) or PCMs (20.1 +/- 3.4 g/dialysis and 1,172 +/- 315 mg/dialysis) than with NI (15.1 +/- 3.9 g/dialysis and 895 +/- 202 mg/dialysis). Body weight, ultrafiltration, Kt/V, and increases in hemoglobin and albumin levels during dialysis did not differ among the NI, PCMs, and TEMS groups. LIMITATIONS: The study design does not allow extension of the findings to prolonged treatment. CONCLUSION: Future studies during longer observation periods will have to prove the persistence of these acute findings. Both TEMS and PCMs deserve future investigations in dialysis patients because they increase intradialytic blood pressure and facilitate urea and phosphate removal when applied short term.
Resumo:
The electrical power source is a critical component of the scoping level study as the source affects both the project economics and timeline. This paper proposes a systematic approach to selecting an electrical power source for a new mine. Orvana Minerals Copperwood project is used as a case study. The Copperwood results show that the proposed scoping level approach is consistent with the subsequent much more detailed feasibility study.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.
Resumo:
Polymer electrolyte fuel cell (PEMFC) is promising source of clean power in many applications ranging from portable electronics to automotive and land-based power generation. However, widespread commercialization of PEMFC is primarily challenged by degradation. The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. The objective of this project is to conduct experiments on membrane electrode assembly (MEA) components of PEMFC to study structural, mechanical, electrical and chemical changes during ageing and understanding failure/degradation mechanism. The first part of this project was devoted to surface roughness analysis on catalyst layer (CL) and gas diffusion layer (GDL) using surface mapping microscopy. This study was motivated by the need to have a quantitative understanding of the GDL and CL surface morphology at the submicron level to predict interfacial contact resistance. Nanoindentation studies using atomic force microscope (AFM) were introduced to investigate the effect of degradation on mechanical properties of CL. The elastic modulus was decreased by 45 % in end of life (EOL) CL as compare to beginning of life (BOL) CL. In another set of experiment, conductive AFM (cAFM) was used to probe the local electric current in CL. The conductivity drops by 62 % in EOL CL. The future task will include characterization of MEA degradation using Raman and Fourier transform infrared (FTIR) spectroscopy. Raman spectroscopy will help to detect degree of structural disorder in CL during degradation. FTIR will help to study the effect of CO in CL. XRD will be used to determine Pt particle size and its crystallinity. In-situ conductive AFM studies using electrochemical cell on CL to correlate its structure with oxygen reduction reaction (ORR) reactivity
Resumo:
Fuel-lean combustion and exhaust gas recirculation (EGR) in spark ignition engines improve engine efficiency and reduce emission. However, flame initiation becomes more difficult in lean and dilute fuel-air mixture with traditional spark discharge. This research proposal will first provide an intensive review on topics related to spark ignition including properties of electrical discharge, flame kernel behavior and spark ignition modeling and simulation. Focus will be laid on electrical discharge pattern effect as it is showing prospect in extending ignition limits in SI engines. An experimental setup has been built with an optically accessible constant volume combustion vessel. Multiple imaging techniques as well as spectroscopy will be applied. By varying spark discharge patterns, preliminary test results are available on consequent flame kernel development. In addition to experimental investigation of spark plasma and flame kernel development, spark ignition modeling with detailed description of plasma channel is also proposed for this study.