922 resultados para Efficient error correction
Resumo:
This paper presents a new respiratory impedance estimator to minimize the error due to breathing. Its practical reliability was evaluated in a simulation using realistic signals. These signals were generated by superposing pressure and flow records obtained in two conditions: 1) when applying forced oscillation to a resistance- inertance- elastance (RIE) mechanical model; 2) when healthy subjects breathed through the unexcited forced oscillation generator. Impedances computed (4-32 Hz) from the simulated signals with the new estimator resulted in a mean value which was scarcely biased by the added breathing (errors less than 1 percent in the mean R, I , and E ) and had a small variability (coefficients of variation of R, I, and E of 1.3, 3.5, and 9.6 percent, respectively). Our results suggest that the proposed estimator reduces the error in measurement of respiratory impedance without appreciable extracomputational cost.
Resumo:
[spa] La implementación de un programa de subvenciones públicas a proyectos empresariales de I+D comporta establecer un sistema de selección de proyectos. Esta selección se enfrenta a problemas relevantes, como son la medición del posible rendimiento de los proyectos de I+D y la optimización del proceso de selección entre proyectos con múltiples y a veces incomparables medidas de resultados. Las agencias públicas utilizan mayoritariamente el método peer review que, aunque presenta ventajas, no está exento de críticas. En cambio, las empresas privadas con el objetivo de optimizar su inversión en I+D utilizan métodos más cuantitativos, como el Data Envelopment Análisis (DEA). En este trabajo se compara la actuación de los evaluadores de una agencia pública (peer review) con una metodología alternativa de selección de proyectos como es el DEA.
Resumo:
[spa] La implementación de un programa de subvenciones públicas a proyectos empresariales de I+D comporta establecer un sistema de selección de proyectos. Esta selección se enfrenta a problemas relevantes, como son la medición del posible rendimiento de los proyectos de I+D y la optimización del proceso de selección entre proyectos con múltiples y a veces incomparables medidas de resultados. Las agencias públicas utilizan mayoritariamente el método peer review que, aunque presenta ventajas, no está exento de críticas. En cambio, las empresas privadas con el objetivo de optimizar su inversión en I+D utilizan métodos más cuantitativos, como el Data Envelopment Análisis (DEA). En este trabajo se compara la actuación de los evaluadores de una agencia pública (peer review) con una metodología alternativa de selección de proyectos como es el DEA.
Resumo:
Two cationic octanuclear metalla-cubes [Ru(8)(η(6)-C(6)H(5)Me)(8)(tpp-H2)(2)(dhbq)(4)](8+) and [Ru(8)(η(6)-p-iPrC(6)H(4)Me)(8)(tpp-H2)(2)(dhbq)(4)](8+) were prepared and evaluated as dual photosensitizers and chemotherapeutics in cancer cells. In the dark, the complexes presented high cytotoxicity towards only melanoma and ovarian cancer cells. However, the complexes exhibited good phototoxicities toward all cancer cells (1μM concentration, LD(50)=2-7J/cm(2)), thus suggesting a dual synergistic effect with good properties of both the arene ruthenium chemotherapeutics and the porphyrin photosensitizers.
Resumo:
We present an extensive study of the structural and optical emission properties in aluminum silicates and soda-lime silicates codoped with Si nanoclusters (Si-nc) and Er. Si excess of 5 and 15¿at.¿% and Er concentrations ranging from 2×1019 up to 6×1020¿cm¿3 were introduced by ion implantation. Thermal treatments at different temperatures were carried out before and after Er implantation. Structural characterization of the resulting structures was performed to obtain the layer composition and the size distribution of Si clusters. A comprehensive study has been carried out of the light emission as a function of the matrix characteristics, Si and Er contents, excitation wavelength, and power. Er emission at 1540¿nm has been detected in all coimplanted glasses, with similar intensities. We estimated lifetimes ranging from 2.5¿to¿12¿ms (depending on the Er dose and Si excess) and an effective excitation cross section of about 1×10¿17¿cm2 at low fluxes that decreases at high pump power. By quantifying the amount of Er ions excited through Si-nc we find a fraction of 10% of the total Er concentration. Upconversion coefficients of about 3×10¿18¿cm¿3¿s¿1 have been found for soda-lime glasses and one order of magnitude lower in aluminum silicates.
Resumo:
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations involve numerous samples they become expensive and laborious. An interesting and lower cost alternative is drift counteraction by signal processing techniques. Orthogonal Signal Correction (OSC) is proposed for drift compensation in chemical sensor arrays. The performance of OSC is also compared with Component Correction (CC). A simple classification algorithm has been employed for assessing the performance of the algorithms on a dataset composed by measurements of three analytes using an array of seventeen conductive polymer gas sensors over a ten month period.
Resumo:
BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. OBJECTIVE: The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. METHODS AND RESULTS: The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte.
Resumo:
Three-dimensional free-breathing coronary magnetic resonance angiography was performed in eight healthy volunteers with use of real-time navigator technology. Images acquired with the navigator localized at the right hemidiaphragm and at the left ventricle were objectively compared. The diaphragmatic navigator was found to be superior for vessel delineation of middle to distal portions of the coronary arteries.
Resumo:
[spa] La implementación de un programa de subvenciones públicas a proyectos empresariales de I+D comporta establecer un sistema de selección de proyectos. Esta selección se enfrenta a problemas relevantes, como son la medición del posible rendimiento de los proyectos de I+D y la optimización del proceso de selección entre proyectos con múltiples y a veces incomparables medidas de resultados. Las agencias públicas utilizan mayoritariamente el método peer review que, aunque presenta ventajas, no está exento de críticas. En cambio, las empresas privadas con el objetivo de optimizar su inversión en I+D utilizan métodos más cuantitativos, como el Data Envelopment Análisis (DEA). En este trabajo se compara la actuación de los evaluadores de una agencia pública (peer review) con una metodología alternativa de selección de proyectos como es el DEA.
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.