978 resultados para Dispersion Coefficients
Resumo:
In the event of a release of toxic gas in the center of London, the emergency services would need to determine quickly the extent of the area contaminated. The transport of pollutants by turbulent flow within the complex street and building architecture of cities is not straightforward, and we might wonder whether it is at all possible to make a scientifically-reasoned decision. Here we describe recent progress from a major UK project, ‘Dispersion of Air Pollution and its Penetration into the Local Environment’ (DAPPLE, www.dapple.org.uk). In DAPPLE, we focus on the movement of airborne pollutants in cities by developing a greater understanding of atmospheric flow and dispersion within urban street networks. In particular, we carried out full-scale dispersion experiments in central London (UK) during 2003, 2004, 2007, and 2008 to address the extent of the dispersion of tracers following their release at street level. These measurements complemented previous studies because (i) our focus was on dispersion within the first kilometer from the source, when most of the material was expected to remain within the street network rather than being mixed into the boundary layer aloft, (ii) measurements were made under a wide variety of meteorological conditions, and (iii) central London represents a European, rather than North American, city geometry. Interpretation of the results from the full-scale experiments was supported by extensive numerical and wind tunnel modeling, which allowed more detailed analysis under idealized and controlled conditions. In this article, we review the full-scale DAPPLE methodologies and show early results from the analysis of the 2007 field campaign data.
Resumo:
Four perfluorocarbon tracer dispersion experiments were carried out in central London, United Kingdom in 2004. These experiments were supplementary to the dispersion of air pollution and penetration into the local environment (DAPPLE) campaign and consisted of ground level releases, roof level releases and mobile releases; the latter are believed to be the first such experiments to be undertaken. A detailed description of the experiments including release, sampling, analysis and wind observations is given. The characteristics of dispersion from the fixed and mobile sources are discussed and contrasted, in particular, the decay in concentration levels away from the source location and the additional variability that results from the non-uniformity of vehicle speed. Copyright © 2009 Royal Meteorological Society
Resumo:
This paper reports an uncertainty analysis of critical loads for acid deposition for a site in southern England, using the Steady State Mass Balance Model. The uncertainty bounds, distribution type and correlation structure for each of the 18 input parameters was considered explicitly, and overall uncertainty estimated by Monte Carlo methods. Estimates of deposition uncertainty were made from measured data and an atmospheric dispersion model, and hence the uncertainty in exceedance could also be calculated. The uncertainties of the calculated critical loads were generally much lower than those of the input parameters due to a "compensation of errors" mechanism - coefficients of variation ranged from 13% for CLmaxN to 37% for CL(A). With 1990 deposition, the probability that the critical load was exceeded was > 0.99; to reduce this probability to 0.50, a 63% reduction in deposition is required; to 0.05, an 82% reduction. With 1997 deposition, which was lower than that in 1990, exceedance probabilities declined and uncertainties in exceedance narrowed as deposition uncertainty had less effect. The parameters contributing most to the uncertainty in critical loads were weathering rates, base cation uptake rates, and choice of critical chemical value, indicating possible research priorities. However, the different critical load parameters were to some extent sensitive to different input parameters. The application of such probabilistic results to environmental regulation is discussed.
Resumo:
A new model of dispersion has been developed to simulate the impact of pollutant discharges on river systems. The model accounts for the main dispersion processes operating in rivers as well as the dilution from incoming tributaries and first-order kinetic decay processes. The model is dynamic and simulates the hourly behaviour of river flow and pollutants along river systems. The model has been applied to the Aries and Mures River System in Romania and has been used to assess the impacts of potential dam releases from the Roia Montan Mine in Transylvania, Romania. The question of mine water release is investigated under a range of scenarios. The impacts on pollution levels downstream at key sites and at the border with Hungary are investigated.
Resumo:
The kinetics of uptake of gaseous N2O5 on submicron aerosols containing NaCl and natural sea salt have been investigated in a flow reactor as a function of relative humidity (RH) in the range 30-80% at 295±2K and a total pressure of 1bar. The measured uptake coefficients, γ, were larger on the aerosols containing sea salt compared to those of pure NaCl, and in both cases increased with increasing RH. These observations are explained in terms of the variation in the size of the salt droplets, which leads to a limitation in the uptake rate into small particles. After correction for this effect the uptake coefficients are independent of relative humidity, and agree with those measured previously on larger droplets. A value of γ=0.025 is recommended for the reactive uptake coefficient for N2O5 on deliquesced sea salt droplets at 298K and RH>40%.
Resumo:
While over-dispersion in capture–recapture studies is well known to lead to poor estimation of population size, current diagnostic tools to detect the presence of heterogeneity have not been specifically developed for capture–recapture studies. To address this, a simple and efficient method of testing for over-dispersion in zero-truncated count data is developed and evaluated. The proposed method generalizes an over-dispersion test previously suggested for un-truncated count data and may also be used for testing residual over-dispersion in zero-inflation data. Simulations suggest that the asymptotic distribution of the test statistic is standard normal and that this approximation is also reasonable for small sample sizes. The method is also shown to be more efficient than an existing test for over-dispersion adapted for the capture–recapture setting. Studies with zero-truncated and zero-inflated count data are used to illustrate the test procedures.
Resumo:
This paper presents a first attempt to estimate mixing parameters from sea level observations using a particle method based on importance sampling. The method is applied to an ensemble of 128 members of model simulations with a global ocean general circulation model of high complexity. Idealized twin experiments demonstrate that the method is able to accurately reconstruct mixing parameters from an observed mean sea level field when mixing is assumed to be spatially homogeneous. An experiment with inhomogeneous eddy coefficients fails because of the limited ensemble size. This is overcome by the introduction of local weighting, which is able to capture spatial variations in mixing qualitatively. As the sensitivity of sea level for variations in mixing is higher for low values of mixing coefficients, the method works relatively well in regions of low eddy activity.
Resumo:
This paper provides a generalisation of the structural time series version of the Almost Ideal Demand System (AIDS) that allows for time-varying coefficients (TVC/AIDS) in the presence of cross-equation constraints. An empirical appraisal of the TVC/AIDS is made using a dynamic AIDS with trending intercept as the baseline model with a data set from the Italian Household Budget Survey (1986-2001). The assessment is based on four criteria: adherence to theoretical constraints, statistical diagnostics on residuals, forecasting performance and economic meaningfulness. No clear evidence is found for superior performance of the TVC/AIDS, apart from improved short-term forecasts.
Resumo:
Tannins can cause beneficial or harmful nutritional effects, but their great diversity has until now prevented a rational distinction between tannin structures and their nutritional responses. An attempt has been made to study this problem by examining the octanol-water solubilities of tannins. A relatively simple HPLC method has been developed for screening mixtures of plant tannins for their octanol-water partition coefficients (K-ow coefficients). Tannins were isolated from the fruits and leaves of different Acacia, Calliandra, Dichrostachys, and Piliostigma species, which are known to produce beneficial or harmful effects. The K-ow coefficients of these tannins ranged from 0.061 to 13.9, average coefficients of variation were 9.2% and recoveries were 107%. Acacia nilotica fruits and leaves had the highest K-ow coefficients, that is, 2.0 and 13.9, respectively. These A. nilotica products also have high concentrations of tannins. The combined effects of high octanol solubilities and high tannin concentrations may explain their negative effects on animal nutrition and health. It is known that compounds with high octanol solubilities are more easily absorbed into tissues, and it is, therefore, proposed that such compounds are more likely to cause toxicity problems especially if consumed in large quantities. According to the literature, tannins in human foods tend to have low K-ow coefficients, and this was confirmed for the tannins in Piliostigma thonningii fruits. Therefore, unconventional feeds or browse products should be screened not only for their tannin concentrations but also for low octanol-water partition coefficients in order to identify nutritionally safe feeds and to avoid potentially toxic feeds.