773 resultados para Data Mining, Rough Sets, Multi-Dimension, Association Rules, Constraint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce K-tree in an information retrieval context. It is an efficient approximation of the k-means clustering algorithm. Unlike k-means it forms a hierarchy of clusters. It has been extended to address issues with sparse representations. We compare performance and quality to CLUTO using document collections. The K-tree has a low time complexity that is suitable for large document collections. This tree structure allows for efficient disk based implementations where space requirements exceed that of main memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project has further developed two programs for the industry partners related to service life prediction and salt deposition. The program for Queensland Department of Main Roads which predicts salt deposition on different bridge structures at any point in Queensland has been further refined by looking at more variables. It was found that the height of the bridge significantly affects the salt deposition levels only when very close to the coast. However the effect of natural cleaning of salt by rainfall was incorporated into the program. The user interface allows selection of a location in Queensland, followed by a bridge component. The program then predicts the annual salt deposition rate and rates the likely severity of the environment. The service life prediction program for the Queensland Department of Public Works has been expanded to include 10 common building components, in a variety of environments. Data mining procedures have been used to develop the program and increase the usefulness of the application. A Query Based Learning System (QBLS) has been developed which is based on a data-centric model with extensions to provide support for user interaction. The program is based on number of sources of information about the service life of building components. These include the Delphi survey, the CSIRO Holistic model and a school survey. During the project, the Holistic model was modified for each building component and databases generated for the locations of all Queensland schools. Experiments were carried out to verify and provide parameters for the modelling. These included instrumentation of a downpipe, measurements on pH and chloride levels in leaf litter, EIS measurements and chromate leaching from Colorbond materials and dose tests to measure corrosion rates of new materials. A further database was also generated for inclusion in the program through a large school survey. Over 30 schools in a range of environments from tropical coastal to temperate inland were visited and the condition of the building components rated on a scale of 0-5. The data was analysed and used to calculate an average service life for each component/material combination in the environments, where sufficient examples were available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-World Data Mining Applications generally do not end up with the creation of the models. The use of the model is the final purpose especially in prediction tasks. The problem arises when the model is built based on much more information than that the user can provide in using the model. As a result, the performance of model reduces drastically due to many missing attributes values. This paper develops a new learning system framework, called as User Query Based Learning System (UQBLS), for building data mining models best suitable for users use. We demonstrate its deployment in a real-world application of the lifetime prediction of metallic components in buildings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMM stands for 'Agents for Improved Maintenance Management.' The AIMM system is a prototype tool that has developed the state of the art life cycle modelling of buildings through the linking of a 3D model with maintenance data to allow both the facility manager and the designer to gain access to building maintenance information and knowledge that is currently inaccessible. AIMM integrates data mining agents into the maintenance process to produce timely data for the facility manager on the effects of different maintenance regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the approach taken to the XML Mining track at INEX 2008 by a group at the Queensland University of Technology. We introduce the K-tree clustering algorithm in an Information Retrieval context by adapting it for document clustering. Many large scale problems exist in document clustering. K-tree scales well with large inputs due to its low complexity. It offers promising results both in terms of efficiency and quality. Document classification was completed using Support Vector Machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Particularly, highway design reduces the driving task mainly to a lane-keeping one. It contributes to hypovigilance and road crashes as drivers are often not aware that their driving behaviour is impaired. Monotony increases fatigue, however, the fatigue community has mainly focused on endogenous factors leading to fatigue such as sleep deprivation. This paper focuses on the exogenous factor monotony which contributes to hypovigilance. Objective measurements of the effects of monotonous driving conditions on the driver and the vehicle's dynamics is systematically reviewed with the aim of justifying the relevance of the need for a mathematical framework that could predict hypovigilance in real-time. Although electroencephalography (EEG) is one of the most reliable measures of vigilance, it is obtrusive. This suggests to predict from observable variables the time when the driver is hypovigilant. Outlined is a vision for future research in the modelling of driver vigilance decrement due to monotonous driving conditions. A mathematical model for predicting drivers’ hypovigilance using information like lane positioning, steering wheel movements and eye blinks is provided. Such a modelling of driver vigilance should enable the future development of an in-vehicle device that detects driver hypovigilance in advance, thus offering the potential to enhance road safety and prevent road crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel framework for facial expression recognition from still images by selecting, optimizing and fusing ‘salient’ Gabor feature layers to recognize six universal facial expressions using the K nearest neighbor classifier. The recognition comparisons with all layer approach using JAFFE and Cohn-Kanade (CK) databases confirm that using ‘salient’ Gabor feature layers with optimized sizes can achieve better recognition performance and dramatically reduce computational time. Moreover, comparisons with the state of the art performances demonstrate the effectiveness of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent software agents are promising in improving the effectiveness of e-marketplaces for e-commerce. Although a large amount of research has been conducted to develop negotiation protocols and mechanisms for e-marketplaces, existing negotiation mechanisms are weak in dealing with complex and dynamic negotiation spaces often found in e-commerce. This paper illustrates a novel knowledge discovery method and a probabilistic negotiation decision making mechanism to improve the performance of negotiation agents. Our preliminary experiments show that the probabilistic negotiation agents empowered by knowledge discovery mechanisms are more effective and efficient than the Pareto optimal negotiation agents in simulated e-marketplaces.